Laboratory of Heatmetry (LH)

The head of the laboratory of heatmetry

Leonid Vorobiov, DSc.



03680, Kyiv-57, Marii Kapnist str, 2-A

phone: +38 044 453 28 43;



Laboratory employees – 5 people (3 DScs, and 2 PhDs)

History of the laboratory.

In 1972, at the Institute of engineering thermophysics under the leadership of member-cor. of the Academy of Sciences of the Ukrainian SSR Oleg Herashchenko, the Department of heatmetry was established. Thanks to his work, the main theoretical principles of heat flow measurement, various models of heat flow converters, methods of their construction and calculation were developed. Based on the developed sensors, new devices were created for measuring radiation, conductive and convective heat flows, determining the thermal conductivity of materials, researching complex heat exchange processes and metrological support for heat flow measurements.

Since 1992, the department of heatmetry was headed by students of O. Herashchenko: DSc  Tetiana Hryshchenko (1992 – 2004), and PhD (Engin.) Leonid Dekusha. During this period, in the heatmetry department new types of transducers were created, which significantly expanded the ranges of heat flow measurements, and also increased its speed by an order of magnitude. Means of metrological support were developed, devices for determining heat flows from flames during fire tests as well as thermal load on elements of rocket and space technology. Also were created the numerous of devices for determining thermal conductivity and heat capacity of materials, heat of combustion of fuels, heat of evaporation from heterogeneous raw materials, control of thermal resistance of enclosing structures, determination of heat losses in sections of heat lines, control of heat losses of energy equipment etc.

Since 2014 to 2021 the thermometry laboratory existed as a part of the Department of heatmetry, diagnostics and optimization in power engineering, and later as a part of the Department of monitoring and optimization of thermophysical processes under the leadership of NAS Corresponding Member Vitalii Babak. During this time, laboratory workers developed a system for monitoring the thermal resistance of enclosing structures, a device for measuring the emissivity of surfaces and coatings, and an information measuring system for thermophysical characteristics measuring.

Since 2022 the Heatmetry laboratory was created as a structural department of the Institute of Engineering Thermophysics, the head of which is DSc Leonid Vorobiov.

To the employees of the heatmetry laboratory as part of the team of authors in 2004 awarded the State Prize of Ukraine in science and technology. Employees of the laboratory received two prizes of the President of Ukraine for young scientists (2015, 2019), as well as prizes of the National Academy of Sciences of Ukraine named after G.F Proskura (2017) and V.I. Tolubinsky (2020).

Main directions of activity of the Laboratory of Heatmetry

More >>>

The theory of thermal quantities measuring and development of new thermophysical devices and systems for monitoring the condition of technical facilities and technologies:

  • Measurement and control of the heat quantities; development and implementation of the means for measuring the thermophysical characteristics and thermal radiation properties of substances;
  • Development of the means for measuring and controlling energy parameters of buildings and structures.
  • Development of means for measuring and controlling energy parameters of technological processes.
  • Developing regulatory and technical normative documents (standards, specifications, measuring techniques, etc.) in the field of measuring of heat flow, thermophysical characteristics of materials and parameters of thermal modes of equipment, buildings and structures operation.

Detailed directions of activity of the Laboratory of Heatmetry

More >>>


The aim of the work is to ensure the reliability of measurement information on the energy, thermophysical and thermodynamical properties of new materials, substances and products; development, manufacture and implementation of heat measurement devices for solving applied problems in accordance with the technical specifications.

Main research results: more than 200 types and designs of primary heat flux and temperature transducers (sensors), as well as thermophysical devices based on it have been created, including:

  • heat measuring devices, systems and complexes for measuring the thermal conductivity of building materials, thermal resistance of double-glazed windows, emission coefficient of materials at long-wave spectrum region, for determining the heat of hydration of concrete and cement, as well as for thermal testing of enclosing structures in the laboratory and in the field;
  • conductive bomb calorimeters for determining the calorific value of solid, liquid and gaseous fuels;
  • means of measuring the thermal load on the main aerodynamic fairing of the launch vehicle during the launch of spacecraft;
  • system for measuring the specific heat capacity of polymeric and composite materials;

The work on the measurement and control of thermal quantities became an integral part of the Institute’s work, which was awarded the State Prize of Ukraine in Science and Technology in 2004. (DSc. Tetiana Hryshchenko, PhD Leonid Dekusha and PhD Leonid Vorobiov).

For the development of heatmetric means of measuring the thermal load on the main fairing of the launch vehicle in flight conditions, PhD Oleh Dekusha and PhD Svitlana Kovtun were awarded the Presidential Prize for Young Scientists in 2015.


The aim of the work is providing the technical and metrological base for monitoring the energy efficiency of buildings and structures; developing, manufacturing and implementing energy audit tools for consumers and specialized institutions.

Main research results:

  • Dozens of measuring devices for monitoring the thermal resistance of building envelopes were created and implemented at Ukrainian enterprises in accordance with the Ukrainian regulatory documents;
  • An instrument for determining the air tightness and air exchange rate in the premises was created;
  • A numerous of devices for determining insolation of buildings based on primary heat flux converters was created.

The aim of the work is to develop and implement means of controlling and optimizing the energy parameters of technological processes and increasing its efficiency.

Main research results:

  • A line of heat flow and temperature transducers was created to control the curing of concrete and cement mixtures, as well as to control the heating elements of technological lines.
  • A device for express control of the emission coefficient of surfaces of materials and coatings was created.
  • A system of synchronous thermal analysis of the heat capacity and heat of moisture evaporation from plant raw materials and biofuels was created to optimize energy consumption for their drying process.

The work on the development of methods and means for controlling the quality of fuels and improving its combustion efficiency was awarded the Presidential Prize for Young Scientists in 2019.


The aim of the work is ensuring the uniformity, reliability and comparability of the results of measuring heat flow, thermal and physical characteristics and thermal radiation properties of materials and coatings, controlling the parameters of thermal modes of equipment operation, and thermal engineering inspection of buildings and structures.

The main results of the research: we developed 35 regulatory and methodological documents, including national and international standards, as well as Ukrainian standards harmonized with international standards, which are designed to solve problems in the field of thermal measurements.

Description of completed engineering solutions

More >>>

Heat flow and temperature transducers of various types and purposes.

More than 20 thousand samples have been implemented.


The system of synchronous thermal analysis designed to measure the heat capacity of a wide range of materials and to study the evaporation heat of water and organic liquids from wet raw materials.

Implemented in the ITTF of the NAS of Ukraine.


The devise for measuring the heat capacity UVT-1 is an instrument for measuring the heat capacity of polymeric and synthetic materials, such as rubbers, plastics, composites, etc. in the temperature range from 300 K to 450 K.

It was implemented at the Yuzhnoye State Design Office..


Measuring and testing complex ITS-3 for thermal testing of window glass units to determine their thermal resistance in accordance with DSTU B.V.2.6-17-2000.

Implemented at Technoluch LLC.


IT-7 series devices for measuring the thermal conductivity of building materials in accordance with DSTU ISO 8301.

5 samples were introduced at Ukrainian companies.


RAP series devices for fire safety testing.

12 devices of this type were implemented at Ukrainian companies.


KTS-4 calorimeter for determining the calorific value of various types of solid and liquid fuels.

11 devices of the KTS series were implemented at Ukrainian companies.

The multi-channel information and measuring complex “RESURS” is designed to measure heat flow and temperature values when determining thermal resistance and heat losses through the power equipment and the enclosing structures of buildings.

6 complexes of the “RESURS” series have been implemented at Ukrainian companies.


Portable device “IT-8M” is designed for express-measurement of thermal conductivity of building materials and products in field. It is possible to study solid samples of material of any shape or bulk materials in a container.


The laboratory carries out research on the determination of thermophysical and thermodynamic parameters of materials in accordance with the current regulatory documents with the provision of an official protocol from the institution.

Description of implemented and completed projects (2021-2022)

More >>>

Departmental subjects:


The structure of hardware and software tools for determining the quality of fuel and controlling the process of its combustion has been developed.

Target topics:


An information and measuring system for the comprehensive determination of the thermophysical characteristics of materials and products according the requirements of ISO 8301:2007 was created. It has metrological characteristics that meet the best world analogues and provides metrological support in the energy, housing and communal services, and construction industries.

Calorimetric methods for measuring the thermophysical and thermal radiation characteristics of building and thermal insulation materials, isuch as energy-efficient glass, thin coatings, concrete mixtures in a wide temperature range, have been developed and implemented.


  • Contract No. 607 (2020-2021) “Provision of services for the study of metrological characteristics of the measuring complex “RESURS-96”, “BUDIVELNA LABORATORIYA” LLC, Mykolaiv;
  • Contract No. 608 (dated 26.01.2021) “Provision of services for determining the calorific value, moisture content and ash content of one sample of waste”, DNM-Realty LLC, Kyiv;
  • Contract No. 609 (dated 24.11.2021) “Provision of services for the calculation of transmission heat losses of the “MOLOKIJA” plant production facility in Ternopil with different options for wall insulation”, RAUTA GROUP LLC, Ternopil;
  • Contract 162/21-Ж (dated 10.21.2021) “Study of metrological characteristics of measuring instruments (heat flow transducers)”, SE “CHERKASYSTANSARTMETROLOHIA”, Cherkasy;
  • Contract No. 1/09-2021/1130 (dated 22.09.2021) “Development and creation of an experimental model of the measuring complex “RESURS-88 and study of its technical characteristics”, State Enterprise “State Research Institute of Building Constructures” (SE SRI BC), Kyiv;
  • Contract No. 611 (dated 20.02.2022) “Provision of services for determination of the calorific value, moisture content and ash content of one sample of wheat bran fuel pellets”, LLC “SPE “BIO ENERGY”, Vilniansk;
  • Contract No. 700 (dated 12.01.2022) “Repair of a set of equipment KITP-1 for measuring and recording thermal parameters”, SE «ANTONOV Company», Kyiv.

Main publications

More >>>

Monographs and chapters in collective monographs:

  1. Грищенко Т.Г., Декуша Л.В., Воробьев Л.И., Бурова З.А., Ковтун С.И., Декуша О.Л. Теплометрия: теория, метрология, практика. Кн. 1: Методы и средства измерения теплового потока. – / Институт технической теплофизики НАН Украины/. – Киев. ТОВ «Наш формат», 2017. – 438 с. (уч.-изд. лист. 27,4). – Тираж 300 экз. – ISBN 978-966-02-8201-8
  2. Декуша О. Л., Запорожець А. О., Іванов С. О., Ковтун С. І., та ін. Теоретичні та прикладні основи економічного, екологічного та технологічного функціонування об’єктів енергетики. – / Бюро відділення фізико-технічних проблем енергетики /. – Київ. ТОВ «Наш формат», 2017.– 312 с. (обл.-вид. арк. 17,6). – Наклад 300 прим. – ISBN 978-966-02-833
  3. Грищенко, Т.Г., Декуша, Л.В., Воробьев, Л.И., Бурова, З.А., Ковтун, С.И., Декуша, О.Л. Теплометрия: теория, метрология, практика. Монография в трех книгах. [ред. д-ра техн. наук. Т.Г. Грищенко]. Кн. 3: Теплометрическая аппаратура для решения прикладных задач : в 2 томах. Том 1. – К.: Институт технической теплофизики НАН Украины, 2018.– 433 с.
  4. Zaporozhets A., Eremenko V., Serhiienko R., Ivanov S. Methods and Hardware for Diagnosing Thermal Power Equipment Based on Smart Grid Technology. PP.476-489 // Advances in Intelligent Systems and Computing III / Selected Papers from the International Conference on Computer Science and Information Technologies, CSIT 2018, September 11-14 Lviv, Ukraine //ed. by N. Shakhovska, M. O. Medykovskyy. – Springer International Publishing, 2019. Doi: 10.1007/978-3-030-01069-0
  5. Теплометрия: теория, метрология, практика. Монография в трех книгах. Книга 3. Т 2.: Теплометрическая апаратура для решения прикладных задач / Т.Г. Грищенко, Л.В. Декуша, Л.И. Воробьев, З.А. Бурова, С.И. Ковтун, О.Л. Декуша ; под ред. д.т.н. Грищенко Т.Г. – К.: ТОВ «Наш формат», 2019. – 348 с.
  6. Zaporozhets A., Eremenko V., Serhiienko R., Ivanov S. Methods and Hardware for Diagnosing Thermal Power Equipment Based on Smart Grid Technology / Розділ монографії Advances in Intelligent Systems and Computing III. – 2019. – vol. 871. – pp. 476-489. doi: 10.1007/978-3-030-01069-0_34 Springer, Cham (Scopus, Web of Science)
  7. Serhiienko R., Zaporozhets A., Ivanov S. Means of quality control of biofuels, their production and combustion. SELECTED ASPECTS OF PROVIDING THE CHEMMOTOLOGICAL RELIABILITY OF THE ENGINEERING. Розділ монографії Monograph. NAU. – P. 126-140. Кyiv-Paris. 2019. DOI:
  8. Babak V.P. Information-Measuring System for Monitoring Thermal Resistance /Vitalii Babak, Oleg Dekusha, Svitlana Kovtun, Serhii Ivanov // Розділ монографії Proceedings of the 15th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer “ICTERI 2019”. Volume I: Main Conference, Kherson, Ukraine, June 12-15, 2019. Рр. 102-1 – Access mode: (Scopus) ISSN 1613-0073
  9. Dekusha O., Kobzar S., Ivanov S., Kovtun S. Calorimetric method for measuring the emissivity of coatings and material surfaces. Розділ монографії. Technologie, procesy i systemy produkcyjne. Akademia Techniczno-Humanistyczna w Bielsku-Białej, 2019, p.47-58.
  10. Zaporozhets, A. et al. (2022). Information Measurement System for Thermal Conductivity Studying. In: Zaporozhets, A. (eds) Advanced Energy Technologies and Systems I. Studies in Systems, Decision and Control, vol 395. Springer, Cham.
  11. Babak, V., Dekusha, O., Zaporozhets, A., Vorobiov, L., Kovtun, S. (2023). Methods for Diagnosing the Technical Condition of Heating Networks Pipelines. In: Zaporozhets, A. (eds) Systems, Decision and Control in Energy IV. Studies in Systems, Decision and Control, vol Springer, Cham.
  12. Vorobiov L., Dekusha L., Ivanov S. Dynamic measurement methods application in the conductive calorimetry. / Intellectual capital is the foundation of Innovative development. Monographic series «European Science», Chapter 5. (2022). Book 10. Part 2. p 126-137. ScientificWorld –NetAkhatAV, Karlsruhe, Germany . ISBN 978-3-949059-53-7. DOI: 10.30890/2709-2313.2022-10-02.
  13. Воробйов Л.Й., Декуша Л.В., Грищенко Т.Г. Батарейні перетворювачі теплового потоку для кондуктивної калориметрії. / Innovation  in  modern  science. Monographic series «European Science».Chapter 2. (2022). Book 12. Part 1. р.35-49. ScientificWorld –NetAkhatAV, Karlsruhe, Germany. ISBN 978-3-949059-59-9. DOI: 10.30890/2709-2313.2022-12-01-014

A list of main articles:

  1. Dekusha, O., Babak, V., Vorobiov, L., Dekusha, L., Kobzar, S. & Ivanov, S. (2019). The heat exchange simulation in the device for measuring the emissivity of coatings and material surfaces. 2019 IEEE 39th International Conference on Electronics and Nanotechnology “ELNANO-2019”. April 16 – 18, Kyiv, Ukraine. 301-304. DOI: 10.1109/ELNANO.2019.8783537 (Scopus)
  2. Dekusha L., Kovtun S., Dekusha O. Heat Flux Control in Non-stationary Conditions for Industry Applications. CONFERENCE PROCEEDINGS: 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering, Lviv, Ukraine, July 2-6, 2019, Mariya Antyufeyeva (Ed.), р. 601-605DOI: 1109/UKRCON.2019.8879847 (Scopus) ISBN 978-1-7281-3882-4
  3. Ivanov , O. Dekusha, L. Vorobiov, L. Dekusha, Z. Burova The Synchronous Thermal Analysis Cyber-Physical System for the Wet Materials Properties Study // XIV International Scientific and Technical Conference CSIT’19. Computer Science and Information Technologies Lviv, UKRAINE, 17-20 September, 2019 – Proceedings (Scopus)
  4. Novikova, Y., Petrova, Z., Vorobiov, L., Chmel, V., Skliarenko, Y., & Novikova, I. (2022). INVESTIGATION OF THE COMBUSTION PROCESS OF THE DEVELOPED COMPOSITE GRANULES. Paliva, 14(3), 124-130. doi:10.35933/paliva.2022.03.03
  5. Ivanov, S., Dekusha, L., Vorobiov, L., & Dekusha, O. (2021). THE DEVELOPMENT OF A CRYOGENIC CALORIMETRIC SYSTEM FOR STUDYING THE STATE OF LIQUIDS IN INHOMOGENEOUS MATERIALS. Thermophysics and Thermal Power Engineering, 43(2), 84-90.
  6. Воробйов, Л., Декуша, Л., Назаренко, O. та Грищенко, Т. (2017). ПРИМЕНЕНИЕ МЕТОДА КВАЗИДИФФЕРЕЦИАЛЬНОЙ КАЛОРИМЕТРИИ ПРИ РЕАЛИЗАЦИИ ПРИБОРА ДЛЯ ИЗМЕРЕНИЯ ТЕПЛОТЫ СГОРАНИЯ. Теплофізика та Теплоенергетика, 39(1).
  7. Ковтун, С., Декуша, О., Декуша, Л., і Воробйов, Л. (2020). МОДЕЛЮВАННЯ СИСТЕМИ ВІДТВОРЕННЯ ВИСОКОІНТЕНСИВНОГО ТЕПЛОВОГО ПОТОКУ. Доповіді ХIІ Міжнародної науково-технічної конференції “МЕТРОЛОГІЯ ТА ВИМІРЮВАЛЬНА ТЕХНІКА” (“МЕТРОЛОГІЯ–2020”), № 3А (2020), 145-152. DOI:А.2020.218713
  8. Воробйов, Л., Декуша, О., Декуша, Л., Ковтун, С., та Іванов С.О. (2020). ДИФЕРЕНЦІАЛЬНИЙ ПРИЛАД ДЛЯ ВИМІРЮВАННЯ КОЕФІЦІЄНТУ ЕМІСІЇ ПОВЕРХНІ. Доповіді ХIІ Міжнародної науково-технічної конференції “МЕТРОЛОГІЯ ТА ВИМІРЮВАЛЬНА ТЕХНІКА” (“МЕТРОЛОГІЯ–2020”), № 3А (2020), 145-152. DOI:А.2020.218721
  9. Воробйов Л.Й., Декуша Л.В., & Декуша О.Л. (2021). ІНФОРМАЦІЙНО ВИМІРЮВАЛЬНА СИСТЕМА ДЛЯ ПРЕЦИЗІЙНОГО ВИМІРЮВАННЯ КОЕФІЦІЄНТУ ТЕПЛОПРОВІДНОСТІ. The Scientific Heritage, (70-1), 42-53. DOI:24412/9215-0365-2021-70-1-42-53
  10. Paziuk V., Snezhkin Y., Dmytrenko N., Ivanov S., Tokarchuk O., Kupchuk I. Thermal and physical properties and heat-mass transfer processes of drying pumpkin seeds. Przeglad Elektrotechniczny. 2022. Vol. 98 (7). Р. 154-157. (Scopus/Web of Science). doi:10.15199/48.2022.07.25.
  11. Burova Z., Vorobiov L., Ivanov S., Dekusha О. Ways and Means for the Energy Efficiency Increasing of Food Production. /ЗАХОДИ І ЗАСОБИ ПІДВИЩЕННЯ ЕНЕРГОЕФЕКТИВНОСТІ ХАРЧОВИХ ВИРОБНИЦТВ/ Тваринництво та технології харчових продуктів. ТОМ 13, № 2, 2022. ISSN 2706-834X (Online), ISSN 2706-8331 (Print). DOI:
  12. Пазюк В.М., Дмитренко Н.В., Іванов С.О. Теплофізичні властивості насіння гарбуза та особливості його теплового сушіння / Вчені записки Таврійського національного університету імені В.І. Вернадського. Серія: технічні науки. – 2022. – Т.33(72), № 2. – C. 187-192. DOI 10.32838/2663-5941/2022.2/28.
  13. Скляренко Є.В., Воробйов Л.Й. Методика розрахунку термохімічної переробки фрезерного торфу у потоці газового теплоносія./ Modern engineering and innovative technologies, (2022). Karlsruhe, Germany . Issue №20-01, р.22-31. (Index Copernicus, Google Scholar). DOI: 10.30890/2567-5273.2022-20-01-01.
  14. Скляренко Є.В., Воробйов Л.Й. (2022) Вибір і обґрунтування енерготехнологічної схеми термохімічної конверсії рослинної біомаси. / Modern engineering and innovative technologies, (2022). Karlsruhe, Germany . Issue №21, Part 1. р. 18-30.  (Index Copernicus, Google Scholar). DOI: 10.30890/2567-5273.2022-21-01-027.
  15. Скляренко Є.В., Воробйов Л.Й.  Спосіб і установка знешкодження шахтного метану та відходів вугільного виробництва. / Modern engineering and innovative technologies, (2022). Karlsruhe, Germany . Issue №22-01. р.31-37. DOI: 10.30890/2567-5273.2022-22-01-015;
  16. Іванов С.О., Декуша Л.В., Воробйов Л.Й., Декуша О.Л. Розроблення кріогенної калориметричної системи для дослідження стану рідин в неоднорідних матеріалах, 43(2), 84-90, Теплофізика та Теплоенергетика, 2021 (фахове видання України)
  18. Ковтун С.І., Іванов С.О., Декуша Л.В., Декуша О.Л., & Воробйов Л.Й. (2018). ЗАСОБИ ВИМІРЮВАННЯ РАДІАЦІЙНОГО ТЕПЛООБМІНУ ТА ІНСОЛЯЦІЇ. World science, 5 (7 (35)), 31-38.
  19. Avdieieva, L., Zhukotskyi, E., Dekusha, H., & Ivanov, S. Analysis of the existing methods and specific features of drying shiitake mushrooms. Harčova nauka ì tehnologìâ, 15, -. doi: 10.15673/fst.v15i3.2118
  20. Воробйов, Л., Декуша, Л., & Іванов, С. (2022). ЗАСТОСУВАННЯ ДИНАМІЧНИХ МЕТОДІВ ВИМІРЮВАННЯ У КОНДУКТИВНІЙ КАЛОРИМЕТРІЇ. European Science, 2(sge10-02), 126–137.