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INTRODUCTION

To date, from 70 to 90 %, according to various estimates, of main 
and auxiliary equipment of the energy complex of Ukraine has de-
veloped its own resource. In these conditions, further operation of 
energy-intensive, and in some cases extremely dangerous (for ex-
ample, nuclear power plants) equipment requires the creation of 
special, scientific-based methods and means that allow such opera-
tion, ensuring the necessary level of reliability and safety. Recently, 
due to new information technologies and Internet, a sufficient 
number of such methods and tools appeared. Among them, the 
most effective methods are non-destructive control, monitoring 
and diagnostics of energy equipment (EE) units. In all these meth-
ods, the carrier of information about technical condition of studied 
object is a diagnostic signal. Through comprehensive study of diag-
nostic signal (taking into account its measurement, conversion, 
processing and analysis), the researcher obtains necessary informa-
tion about studied object.

For a confident solution of these problems, the researcher first-
ly needs a mathematical model of diagnostic signal that, based on 
the physical features of its formation in diagnosed object, allows to 
obtain objective diagnostic information about this object. Secondly, 
he should use methods and corresponding algorithms for diagnostic 
signals processing that could be implemented on a basis of modern 
electronic devices and information technologies. Herewith, chron-
ologically, the model is primary and the choice of methods and 
technical means for diagnostic signals measuring and processing is 
secondary.

The construction of diagnostic signal mathematical model is 
specified by particular physical process selected by researcher as di-
agnostic information carrier, and also by EE unit as an object of 
diagnosis. In addition, the nature of diagnostic signal model de-
pends on chosen type of diagnosis — test or functional. 

It is known that each unit of diagnosed EE has its own pecu-
liarities in diagnostic signals formation. That is why the monograph 
pays considerable attention to the development and analysis of 
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mathematical models of these signals that are based on corresponding physical pro-
cesses occurring at EE units. 

While constructing these models, two basic approaches could be used: determin-
istic and statistical. With the first approach, deterministic function of time is chosen 
as initial mathematical model of signal coming from primary sensors. In this case, as 
the most informative, amplitude-frequency and phase-frequency parameters of diag-
nostic signal that characterize the operation of studied EE unit are commonly used. 
Diagnosis by deterministic methods is basically reduced to a theoretical definition of 
possible diagnostic attributes and their comparison with the results of experimental 
data analysis. If the latter substantially differ from theoretically obtained results, then 
a conclusion is made about the presence of defect in studied unit. In its essence, these 
methods are applicable in a case when the results of all observations with the same 
initial conditions are identical, and also if the same parameter (characteristic) is mea-
sured under the same conditions. This situation is either highly idealized or is ob-
served with very low accuracy of measuring instruments used, when random effects 
on measurements are not perceived by these instruments. Consequently, with a deter-
ministic approach, there is no need for multiple measurements, since they are all the 
same and conclusion about unit technical state could be made basing on one mea-
surement. However, there is always a possibility, by increasing the accuracy of each 
individual measurement, to detect the unrepeatability of measurement results in the 
situation described above. Then the question arises, which of the resulting series of 
numbers should be considered as a measurement result. Therefore, the use of deter-
ministic methods could not be considered as satisfactory and reasoned, since many 
physical processes (diagnostic signals) arising in different EE units are random by 
their nature, ie, their realizations varies from observation to observation. Thus, it is 
impossible to obtain from one observation a practically reliable answer about the 
technical state of diagnosed units.

Statistical approach allows us to recommend an algorithm based on a series of 
results of certain measurement experiment, by which the best approximation of the 
measured parameter to its true value is calculated in a probabilistic sense. Besides, 
when using statistical diagnostic methods, the measure of possible incorrect decisions 
about technical condition of diagnosed EE units is taken into account, and it is also 
possible to estimate the average number of possible incorrect conclusions, their dis-
persion, etc.

In most works, appropriate attention is not paid to the construction of mathe-
matical and physical models of reference diagnostic signals, and without this, in our 
opinion, comparative analysis of various statistical methods of control and diagnos-
tics is impossible. In a discussion of possibilities of statistical approach for monitoring 
and diagnosis, the very initial moment of diagnosis is often absent - measurements at 
diagnostic objects. These questions are also reflected in this monograph. 

Summing up the results of a brief comparison of deterministic and statistical ap-
proaches to the construction of models, methods and diagnostic systems, the authors 
use the statistical approach in this study, because the vast majority of physical pro-

Babak_КНИГА_N.indd   6 21.03.2018   14:42:09



Introduction

cesses occurring in studied EE units are random by nature. Application of statistical 
methods for EE units diagnostic is also required by number of reasons associated with 
the presence of strong electromagnetic, thermal, acoustic and other fields in operat-
ing EE that act as a noise in measurement, converting, processing and analyzing in-
formation diagnostic signal.

An important point in constructing of diagnostic signal mathematical model, 
and then a diagnostic Information-Measurement System (IMS), based on this mod-
el, is diagnostic signal type used studying various objects. In this work, when diagnos-
ing EE units, various types of diagnostic signals were used: vibration (vibration ac-
celeration), acoustic emission, etc. 

Working on development of IMS for EE units’ diagnostics, authors of this mono-
graph comprehensively considered problems of constructing mathematical probabi-
listic models of diagnostic signals, development of statistical methods for their analy-
sis with the purpose of making a diagnostic decision and, finally, technical implemen-
tation of proposed diagnostic methods. Following the concept of primary nature of 
diagnostic signal mathematical model, authors found it expedient foremost to con-
sider questions connected with the theory of random processes with infinitely divisi-
ble distribution laws, linear and linear periodic random processes. Considerable at-
tention is paid to the problems of imitation modeling of diagnostic signals and their 
statistical estimation. The modern element base and new information technologies 
allowed authors to develop, build and practically test a number of experimental sam-
ples of information-measuring systems for statistical diagnostics of energy facilities.

A large volume of conducted experimental studies showed the operability and 
efficiency of constructed IMS samples.

The authors do not pretend to comprehensively consider issues on EE diagnos-
tics using statistical methods and IMS, implemented on their basis. At the same time, 
the results of the studies described in this monograph are a natural continuation of the 
subject of statistical methods application in the field of control, monitoring and diag-
nostics for electric power facilities.

The authors are sincerely grateful to reviewers — Doctor of Technical Sciences, 
Professor V.P. Malaychuk and Doctor of Technical Sciences, Professor L.M. Shcher-
bak for comments, recommendations and assistance in manuscript formation.

Kiev, autumn 2017                                                                      AUTHORS TEAM
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CHAPTER  1
GENERALIZED PRINCIPLES 
OF CONSTRUCTION OF SYSTEMS 
FOR DIAGNOSING ENERGY 
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CHAPTER  1
GENERALIZED PRINCIPLES 
OF CONSTRUCTION OF SYSTEMS 
FOR DIAGNOSING ENERGY 
OBJECTS

The diagnostic systems (DS) should be oriented to measuring and 
processing signals generated in the power equipment (РЕ) [1, 2]. At 
the same time, the principles for constructing such systems for mea-
suring various diagnostic signals (vibration, acoustic, acoustoemis-
sion, thermal, electrical, etc.) are common. These DS include the 
appropriate measuring and recording equipment, as well as the nec-
essary computer facilities and special software (software) [2, 12]. 

One of the most significant moments in the construction of DS 
is to provide a diagnostic method associated with the formation of 
the training sets and constructing decision rules for diagnostike and 
classification of certain types of defects in the test PE. These meth-
ods together with the above special software constitute the basis of 
information support [3, 5], which is an integral component of the 
product of a significant amount, constituting a so-called soft-com-
ponent systems studied.

Let us dwell on these questions in more detail.

OBJECTS OF ENERGY SUPPLY 
AND OPERATIONAL RELIABILITY 
OF THEIR COMPONENTS

The problem of energy supply and efficient use of energy resources 
is one of the priority issues of Ukraine’s national security. The solu-
tion of this problem directly depends on the efficiency of the main 
power equipment.

The main power equipment is defined as equipment designed to 
generate (electricity, steam, hot water), convert (the chemical en-
ergy of the fuel burned into steam or hot water), transport or trans-
fer the mechanical energy of the energy carrier (water, gas, Steam, 
compressed air, oxygen, nitrogen, etc.).

The basic power equipment is conventionally divided into:
Electric power [1]: generators; engines; transformers; syn-

chronous expansion joints; switching equipment; power lines 

1.1.
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and other network equipment; means of protection and automation control; com-
puter facilities;

Thermomechanical [3]: steam and water-heating boilers; boilers for recycling 
(boilers coolers); steam and gas turbines; auxiliary equipment of boiler plants; air 
separation units; refrigerating installations; the equipment of gas-distributing sta-
tions; compressors – centrifugal and piston; superchargers (blowers, gas blowers and 
exhausers), coke blowers; smoke exhausters; pumps; vessels working under pressure 
(energy); water pipelines (drinking, hot, technical, circulation, slimes, dewatering), 
gas (natural, blast, coke, etc.), steam, heat, air, oxygen, nitrogen, hydrogen and other 
media; channels of storm, technological, sewage; masts and supports, power lines; 
fittings (shut-off, regulating), service areas of pipeline fittings at elevations.

The technological process of production, distribution and consumption of elec-
trical and thermal energy in the form of a generalized scheme is shown in Fig.1.1.

In accordance with the above scheme, in this paper we will consider issues related 
to the construction of information support for systems for diagnosing energy objects.

1.1.1. Main types of electric power equipment

The basis of the electric power industry of Ukraine is the United 
Electric Power System (UES), which provides centralized power supply to domestic 
consumers. In addition, the UES cooperates with the energy systems of neighbor-
ing countries, provides import and export of electricity. It consists of eight regional 
electro-energy systems, interconnected by power lines up to 750 kV.

As it was mentioned above, the main electric power equipment (EPE) includes: 
generators, motors, transformers, synchronous compensators, switching equipment, 

power lines and other network equipment, control means for protection and automation, 

computer equipment.
Various methods for diagnosing EPE are known and are practically used [1, 2, 4, 

6, 7]. These methods are mainly determined by the measured physical process, which 

Fig. 1.1. The general scheme of the technological process of production, distribution and con-
sumptionof electric and thermal energy
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is used as a diagnostic signal to obtain information about the technical state of the 
EPE node under investigation.

Technical diagnostics of power facilities are usually carried out by methods of 
nondestructive testing, after which these objects can be used for their intended pur-
pose. Nondestructive testing, depending on the physical phenomena underlying it, 
is divided into species (DSTU2865-94): magnetic; electric; eddy current; radio wave; 

thermal; optic; radiation; acoustic; penetrating substances.
In this paper, as an example of obtaining diagnostic information, vibration and 

acousto-emission diagnostic signals appearing at the nodes of the most typical repre-
sentative of EPE, namely, electric machines (EM), are considered. These signals are 
measured both directly on the working equipment (functional diagnostics), and on 
equipment that is in an inoperative state. In the latter case, the diagnosis is carried out 
with the help of special, most often shock, effects (test diagnostics).

To obtain information on the technical condition of the EM nodes, numerical 
parameters or functional characteristics of the diagnostic signal, measured directly 
on the EM node under investigation, are most often used. To diagnose specific EM 
nodes, the following parameters are usually used [1]:
§  winding: electrical resistance interturn isolation; surface temperature of the 

windings; the magnitude of the magnetic induction;
§  laminated magnetic circuit: vibration (displacement, speed, acceleration) of the 

frontal parts; the magnitude of the magnetic induction; surface temperature of the 
magnetic circuit;
§  bearing assembly: vibration (displacement, speed, acceleration) of the bearing 

shield; temperature of the bearing shield;
§  frame and the place of its attachment to the foundation: acoustic emission; 

vibration of the frame;
§  brush-collector unit: the transient resistance (conductivity) of the sliding con-

tact; vibration (displacement, speed, acceleration) brush holder; temperature of 
brush holder;
§  elements of the cooling system EM: aerodynamic noise of the fan’s wing fan; vi-

bration of the surfaces of the circulation channels for moving the EM refrigerant.
Next, let us turn to the main components of the heat power equipment and pres-

ent them as diagnostic objects.

1.1.2. Main components of thermal power facilities

Heat supply systems. Heat power engineering is a division of energy 
related to the production, use and conversion of heat into various types of energy 
(GOST 19431-84). There are [3] two fundamentally different directions of the use of 
heat- energy and technology.

With energy use, heat is converted into mechanical work, with the help of which 
electric energy is created in generators, convenient for transmission over a distance.
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With technological (direct) use, heat is used to direct the properties of various 
bodies (melting, solidification, structure change, mechanical, physical, chemical 
properties).

The basis of modern thermal power engineering are thermal power stations [3]. 
Thermal power plant (TPP) is a set of interrelated installations, the general techno-
logical purpose of which is the conversion of the chemical energy of fuel into electri-
cal energy or into electrical energy and heat (GOST 19431-84).

The main elements of the TPP are a boiler plant, a steam or gas turbine and an elec-

tricity generator. In our time steam turbine thermal power plants are predominant.
There are two types of steam turbine thermal stations — condensing power 

plants (CPP), designed for the production of electrical energy, and heating stations, 
or combined heat and power (CHP), in which the combined production of electric-
ity and heat.

The production of heat is also possible at nuclear power plants (NPPs), in 
which the fission energy of atomic nuclei is converted into electrical energy or into 
electrical energy and heat. Steam at nuclear power plants can be obtained both in the 
reactor itself (single-loop NPPs) and in the steam generator (two-circuit and three-
circuit NPPs).

Provision of consumers with heat is carried out by the heat supply system. Ac-
cording to GOST 19431-84, the heat supply system is a set of interconnected power 
plants that heat the district, city, or enterprise.

The main elements of the heat supply system are the source of heat energy, heat 

network, user input and local systems of heat consumers [3].
Let’s briefly dwell on the description of the main heat power plants and some of 

their components.
Boiler installations. The main source of heat production is a boiler plant, which is 

a device for producing steam or hot water [3]. The boiler plant consists of one or more 
boilers and auxiliary equipment.

A boiler is a structurally integrated set of devices for producing steam or forheat-
ing water under pressure due to thermal energy from fuel combustion, the flow of a 
process or the conversion of electrical energy into thermal energy (GOST 23172-78).

The main elements of the boiler are [3]: furnace, surface heat exchanger, super-

heater, economizer, air heater. In the hot water boiler, there are no heat exchange 
surfaces, an air heater and an economizer.

The main elements of auxiliary equipment of boiler plants are: fuel supply system, 

draft equipment, water treatment devices, nutritional devices, feeding pipelines, steam 

pipelines, pipeline fittings, slag and ash dispenser, ash handling devices, thermal 

monitoring devices, boiler control units.

Thermal engines. Thermal engines are designed to convert the chemical energy of 
fuel into the mechanical energy of a rotating shaft [3].

A steam-turbine plant is part of a thermal or nuclear power plant. It is designed 
primarily for economical conversion of steam energy into the work required to drive 
an electric generator.
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The totality of the mechanisms, apparatus and communications of the steam-
turbine plant, along which its working body passes, is called the steam-water path. It 
includes a steam turbine, a condensation unit, a system of regenerative feedwater 
heating.

De-aeration-nutrient installation is formally element of a TPP or a NPPs. However, 
at unit power plants, each deaeration unit only caters for one steam turbine plant and 
technologically is an integral part of it. The system of intermediate dehumidification 
(separation) and steam-steam overheating also belong to the steam-water path of 
NPPs and TPP.

A gas turbine plant is a heat engine, the working body in which remains gaseous 
at all points of the thermal cycle; consists of turbines, compressors, intake devices 
(combustion chambers) and heat removal combined with a common hydromechani-
cal system.

Depending on the method of transferring part of the heat to the cold source, gas 
turbine installations of open and closed cycles are distinguished. The working body of an 
open-cycle gas turbine plant is atmospheric air and combustion products of or ganic fuel, 
and in closed gas turbine installations — air, helium, nitrogen, carbon dioxide, etc.

In an open-cycle gas turbine plant, the working fluid comes from the atmosphere, 
passes through all the elements of the unit once and emits into the atmosphere. In a 
gas-turbine installation of a closed cycle, the working medium continuously circulates 
through a closed circuit, and heat removal takes place in special heat exchangers.

The gas piston engine is an internal combustion engine in which gaseous fuel is 
used. The gas piston engine consists of a casing, the main element of which is a 
cylinder, as well as a crank mechanism, a gas distribution mechanism, a gas supply 
system, an air inlet and exhaust system, lubrication systems, engine cooling systems, 
ignition and start systems.

Cogeneration plants are designed for combined production of electrical and 
thermal energy. The main nodes of the basic scheme of the cogeneration unit are [3] 
a thermal engine, an electric generator and a heat recovery unit.

Electric energy is produced by a thermal engine and an electric generator, thermal 
energy is a thermal engine and a heat-exchanger. The cogeneration unit also includes 
auxiliary equipment — draft machines, pipelines and control systems. The main 
parameters of the cogeneration plant are the thermal and electric power of the 
installation, the efficiency in the generation of electricity, the fuel utilization factor, 
the temperature of the exhaust gases and their number at the rated power [3]. Let us 
dwell on a brief description of the main components of the cogeneration plant.

The thermal engines of the cogeneration unit convert the chemical energy of the 
fuel into mechanical energy of the rotating shaft. The exhaust gases of a thermal 
engine are used to generate heat energy.

Electric generators convert the mechanical energy of the rotating shaft of the heat 
engine into electricity.

The heat exchanger serves for the generation of thermal energy by using the energy 
of the exhaust hot gases from the heat engine.
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Heating network. The transfer of heat from the source to the consumers is carried 
out with the help of heat networks. According to DBN B.2.5-39: 2008, the following 
heat networks are distinguished:
§  Main heat network — a complex of pipelines (pipelines) and facilities that 

provide transportation of heat carrier from a source of thermal energy to heat points 
and (or) a distribution heat network.
§  Distribution heat network — pipelines with structures on them that provide 

transportation of the heat carrier from the central heating station, or the main heat 
network to the thermal input of the consumer.
§  Hot water supply network — a complex of pipelines (heating pipes), equipment 

and facilities that provide the supply of hot water from a heat point or from a source 
of thermal energy to the hot water supply of a consumer.

Subscriber installations perform docking of heat networks of district heating 
systems with local systems of heat consumption.

The composition of the subscriber unit is determined by the schemes for 
connecting the heating and hot water supply systems, the parameters of the heat 
carrier, the modes of heat consumption,

Subscriber installations are equipped with hot water heaters, elevators, pumps, 
fittings, control and measuring devices for regulating parameters and flow of coolant 
through local heating and water distribution devices.

1.1.3. MAIN INDICATORS OF OPERATIONAL 
RELIABILITY OF ENERGY FACILITIES

Some indicators of reliability of electrical power equipment. As of 
2015, the technical condition of the electric power industry is unsatisfactory [1]. It is 
necessary to modernize and introduce new resource-saving technologies, to develop 
alternative sources of electricity (solar, wind, biogas and geothermal power plants). It 
is this fact that makes it necessary to carry out works aimed at ensuring the reliability 
of EE. One of the directions of the solution of this problem is the creation of new 
methods and means of monitoring and diagnostics of the specified equipment.

As noted above, the main EE of power objects is: generators, various types of 
electric machines (EM), used as auxiliary engines, synchronous compensators, 
transformers (power, measuring, etc.), switching equipment (switches, disconnectors 
and so on), network hardware.

The averaged reliability indicators of the main EE [1], given in Table. 1.1, indicate 
that the most unreliable EO can be attributed to generators, electric motors, 
transformers and their nodes.

This is confirmed by the data indicated in the table: synchronous generator 
(failure rate = 1, average recovery time = 100), asynchronous motor (failure rate  = 0.1, 
average recovery time for motors LV = 50, and for motors HV = 160). Therefore, in 
this paper, we will focus mainly on the diagnosis of these types of equipment. The 
methods and tools considered in this work are oriented to the specified equipment, 
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but can also be used for other units and devices operating on similar principles of 
electrical energy conversion.

As the operating experience shows, the main cause of EM accidents and repairs 
is insulation failure both between windings and between the winding and the hull. 
According to [1], the second after the winding by the number of failures is the bearing 
assembly. In the vast majority of cases, failures of generators and electric motors occur 
due to damage to the windings (85...95 %). From 2 % to 5 % EM is rejected because 
of bearing damage. The remaining nodes (brush-collector unit, ventilation system, 
etc.) account for 1...2 % of failures.

To obtain information about the technical state of the nodes of electrotechnical 
equipment, various processes that arise in it during its operation are used, namely 
their numerical parameters and functional characteristics. To diagnose specific EM 
nodes, the following parameters are usually used:

winding: electrical resistance interturn isolation; surface temperature of the 
windings; the magnitude of the magnetic induction;

laminated magnetic circuit: vibration (displacement, speed, acceleration) of the 
frontal parts; The magnitude of the magnetic induction; surface temperature of the 
magnetic circuit;

bearing assembly: vibration (displacement, speed, acceleration) of the bearing 
shield; temperature of the bearing shield;

frame and the place of its attachment to the foundation: acoustic emission; 
vibration of the frame;

Table 1.1. Averaged reliability indicators of the main EE

Type of electrical equipment λ , 1/Y T
B 
, h

Disconnector 0.01 2

Short-circuiting device 0.02 10

Separator 0.03 10

Low voltage circuit breaker (LV) 0.05 4

High voltage fuse (HV) 0.1 2

Busbars with voltage up to 10 kV (per one connection) 0.03 2

Cable line VN, laid in:

trench 0.03 44

blocks 0.005 18

HV cable line laid in the trench (per 1 km) 0.1 24

The air line of the NN (1 km) 0.02 5

Synchronous generator 1 100

Asynchronous motor:

НV 0.1 50

LV 0.1 160
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brush-collector unit: the transient resistance (conductivity) of the sliding contact; 
vibration (displacement, speed, acceleration) brush holder; Temperature of brush 
holder;

elements of the cooling system EM: aerodynamic noise of the fan’s wing fan; 
vibration of the surfaces of the circulation channels for moving the EM refrigerant.

Let us briefly discuss some issues related to the primary research (measurement) 
of the above processes, which, when solving the problem of diagnosing EM, act as 
diagnostic signals.

Windings EM. Reliability of EM is largely determined by the reliability of their 
windings, which, in turn, depends on the state of their insulation. The latter operates 
under conditions of strong electromagnetic, thermal, and vibrational fields. In 
addition, the external climatic conditions, in which EM is operated, have a significant 
effect on the insulation state. Over time, these conditions together lead to a progressive 
deterioration in the properties of insulation. It should be noted at once that a large 
number of works have been devoted to the control and diagnostics of isolation, for 
example, [1].

The main characteristic of insulation, which determines the reliability of EM 
operation, is its electrical strength. However, this most important property of insulation 
can be maintained in the process of exploitation only in the presence of many other 
qualities, the lowering of which leads to a decrease in electrical strength. Thus, 
insulation must maintain a high thermal conductivity, otherwise there will inevitably 
be an increase in local heating, accompanied by accelerated destruction. The 
insulation must have sufficient mechanical strength and elasticity, which would 
exclude the possibility of formation of residual deformation, cracks, stratification of 
it under the influence of mechanical forces. Isolation should maintain a stable 
chemical composition, since its change leads to a decrease in its electrical strength.

In high-voltage machines, the aging of insulation under the influence of an 
electric field is of great importance. During operation, the EM insulation for a long 
time is under operating voltage and periodically is affected by increased stresses — 
with preventive tests and various wave phenomena, the sources of which can be located 
both outside and inside the machine.

The operation data and experimental studies [1.1] show that a noticeable effect 
of the electric field on the service life of insulation begins to be detected in machines 
with a rated voltage of at least 6 kV. In machines for lower stresses, the phenomena of 
electrical aging are not observed.

The insulation of the slotted part of the winding can undergo compression under 
the influence of electrodynamic forces, and in the presence of gaps in the groove it is 
also subject to impacts and abrasion against the groove walls. If there is no freedom of 
movement in the groove, in isolation, in addition to tension and compression, shear 
deformation is also possible. When bending the frontal parts of the winding, the 
greatest stresses occur at the exit points of the rods or coils from the grooves, where 
the insulation experiences compression and tension stresses. In addition, it crumples 
on the pads and in contact with the bandages.
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In most cases, these efforts have a cyclic, alternating character, with the most 
typical vibration being the frequency of 100 Hz [1, 8, 9]. Periodically, during transient 
processes (starting and reverse of motors, short circuits and non-synchronous switch-
on of generators), the vibration amplitudes increase tens of times, due to the increase 
in currents in the windings and the quadratic dependence of the electrodynamic 
forces on the current. Particularly significant efforts can occur in the windings of large 
machines, turbo and hydro generators.

The mechanical characteristics of insulation depend on its temperature. As the 
insulation is heated, the insulation strength decreases rapidly, and at the same time 
the insulation becomes more elastic. This is especially true for insulating structures on 
thermoplastic compasses. Thus, the tensile strength of the mica compound under 
tension is 3340 N/cm2 (340 kgf/cm2) at 20 °C and only 344 N/cm2 (35 kgf/cm2) at 
100 °C. These values   vary greatly depending on the features of technology, operating 
time and other reasons; They are also different for different parts of the winding [1.1]. 
With a decrease in temperature, this insulation becomes fragile. The mechanical 
characteristics of insulation on thermosetting binders are more stable.

According to [1.1], the destruction of insulation occurs gradually, and the 
initiating role belongs to the processes of thermal aging. Even at relatively low tempe-
ratures, when the thermal-oxidative destruction is negligible, the drying of insulation, 
the evaporation of volatile components from the binders, the decrease in the elasticity 
of the insulation, and the increase in its brittleness occur under the action of heat. The 
latter contributes to the development of mechanical aging processes. Cracks and other 
defects appear in the insulation, it breaks up and loosens, which creates the conditions 
for the occurrence of ionization phenomena. The destruction of insulation occurs 
unevenly and ends with a breakdown in the weakest place. Moisture and aggressive 
environments contribute to the acceleration and activation of aging processes.

As a basic diagnostic feature, which makes it possible to judge the electrical strength 
of insulation, the value of the resistance of the interturn isolation is usually used.

At present, a large number of devices, devices and systems for determining the 
electrical strength of insulation can be found on the market [11].

Fused magnetic circuit. The technical condition of the windings of the EM stator 
is directly related to the state of the laminated magnetic wire. To date, for stranded 
magnetic cores of a stator of powerful EM, one of the most common faults is the 
defects associated with weakening the pressing of the extreme packets of the stator’s 
frontal parts (the so-called "swelling"), as well as the mechanical breakage of the 
tightening rods or nuts that fasten the outer clamping flange. The results of recent 
studies [1] show that these defects are often associated with the manifestation of 
"anomalous vibromechanical phenomena" in the stator cores of powerful EM. 
Especially these phenomena become noticeable when, with an increase in the 
diameter of the stator core, the EM’s own frequency begins to approach the frequency 
of the radial forces of magnetic tensions in the air gap.

It is possible to effectively detect such defects by applying statistical spectral 
analysis to the processing of vibration diagnostic signals (vibration displacement, 
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vibration velocity and vibration acceleration), which are measured with the help of 
appropriate vibration sensors. Measurement, recording and subsequent processing of 
these vibrations can be carried out using automated DS vibration diagnostics. A 
description of some of them is given, for example, in [1, 9]. In the implementation of 
these experiments, in the case of the use of these DS vibrodiagnostics, the primary 
sensors are located in the end parts, on the pressure flanges of the stator (or drum 
rotor) of the EM. This approach [1] also makes it possible to determine the degree of 
compacting of the stranded magnetic core of the stator (and for some types of EM 
and rotor) of EM.

Additional information on the technical state of the EM core can also be obtained 
from the temperature data measured with different thermocouples located directly in 
the grooves of the core of the EM magnetic core.

Bearing assembly. The most informative physical process, which makes it possible 
to diagnose almost all types of defects in rolling bearings, is vibration (vibration 
displacement, vibration-speed, vibration acceleration) [1, 13]. Following the requi-
rements of GOST 12379-75, the corresponding sensors are placed on the bearing 
units of the EM in three mutually orthogonal directions (X, Y, Z axes). In the X and 
Y axes, the vibrations are measured in the radial direction (relative to the rotating 
shaft EM), and along the Z axis in the axial direction. Synchronous vibration 
measurement in these three directions allows using the appropriate processing to 
explore the vibration field, which greatly expands the diagnostic capabilities.

The high information content of the vibration diagnostic signal measured at the 
EM bearing unit is due to the fact that the rolling bearings are the only contact 
connection between the stationary and rotating parts of the EM and in them the 
vibrations perturbed at different nodes of the machines under investigation are 
concentrated and mutually superimposed.

The base and the places of its fastening to the foundation. Some general information 
on the technical condition of EM can be obtained from the diagnosis of the EM 
frame and the places of its attachment to the foundation.

Among the processes that make it possible to judge the general state and mecha-
nical loading of massive assemblies of EM attachment are the processes of acoustic 
emission (AE) [4]. To measure the characteristics of AE processes, the relevant sensors 
must be located directly on the diagnostic nodes. A distinctive feature of the processes 
of AE is their rather wide frequency range, the upper limiting frequency of which for 
some materials reaches several megahertz.

Along with AE processes, additional information on the technical state of EM 
during operation can be obtained by measuring the vibration process. In this case, 
according to DSTU ISO 5348: 2009, vibration sensors are placed on the bearing 
supports (for high-power EM), and also directly at the EM attachment points to the 
foundation. 

Brush­collector unit. In operation of most powerful EMs that have an excitation 
system based on current transmission to the rotating field winding through sliding 
contacts, special attention is required to the operation of the brush-collector unit. 

Babak_КНИГА_N.indd   17 21.03.2018   14:42:10



18

CHAPTER 1. Generalized principles of construction of systems for diagnosing energy objects

Nevertheless, as noted in [1.1], until now the creation of technical diagnostic tools 
both in Ukraine and abroad is constrained, first of all, by the absence of theoretically 
grounded and experimentally verified diagnostic features and criteria that would allow 
with a given reliability to carry out diagnostics of the brush-collector unit [1.1].

The most successful attempt to theoretically substantiate and test experimental 
diagnostic features that determine the technical state of the brush-collector device 
was made in [1.1]. In this work, it is recommended to use the following 5 physical 
processes to monitor and diagnose this device:
§  sparking of brushes;
§  the radio emission of the brush and its magnitude;
§  voltage drop ΔU on the brush transition — ring;
§  ambient air temperature near the brush unit;
§  uneven distribution of current on individual brushes in the brushing device EM.
One of the main parameters that is used to monitor the state of the brush-collector 

unit is the transient resistance (conductivity) of the sliding contact. This parameter is 
measured using special sensors, which are installed directly on the brush holders. 

Elements of the cooling system EM. Diagnosis of the EM ventilation system can be 
realized by measuring the acoustic noise and vibrations of its individual components 
(airway surface, fan fan wing, fan shaft bearings).

To measure the acoustic noise of the EM ventilation system, a wide range of 
acoustic measuring equipment can be used, for example, the Brüel & Kjær firms of 
type 8609, 8637, 8752, etc. Practical measurements of acoustic noise EM are carried 
out taking into account the requirements of GOST 17377-73, 17975-75, 17995-75 
and others.

Measurement of EM vibrations is realized with the help of primary sensors, 
which can be installed both on the surface of the air duct and on the bearing units of 
the fan. In this case, it is necessary to ensure compliance with the requirements of 
GOST 17375-75, 17377-73, etc.

1.2. GENERALIZED STRUCTURE OF SYSTEMS 
FOR DIAGNOSING ENERGY OBJECTS

Information on the state of the operating equipment is contained in 
various signals, which are measured during its operation. One of the indicators is the 
temperature of various parts of the EE. For EE with rotating nodes, the most important 
diagnostic signal is vibration. Therefore, the analysis of vibrations and temperature of 
individual components is the basis for the technical diagnosis of EO. This line of 
research has broadened the capabilities of existing methods of nondestructive testing, 
enabled us to solve practical problems of long-term prognosis of the state of equipment 
that contains rotating nodes.

Recently, the Interstate Council for Standardization, Metrology and Certification, 
which includes Ukraine, adopted a number of standards related to the diagnosis of 
electrical equipment, and comply with international standards ISO (International 
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Standard Organization). Let’s consider some of them, which should be used when 
creating modern diagnostic equipment for PE.

The analysis of the current standards of Ukraine, interstate, European and 
international standards in the field of ensuring the reliability of PE gives grounds to 
formulate the following requirements, which modern competitive systems of vibration 
diagnostics of EE should meet.
§  Measuring ranges:
§  vibration speed (not less than): 30 mm/s;
§  vibration displacement (not less than): 350 µm.
Frequency range:
§  measuring range of vibration (not worse): 10...2500 Hz;
§  accelerometer calibration frequency: 79.6 Hz.
Nodes, on which it is necessary to measure vibration:
§  for synchronous machines: vibration on the upper caps of the bearings in the 

vertical direction and at the connector in the transverse and axial directions;
§  in hydrogenerators: vibration in the horizontal plane of the crosses;
§  in turbogenerators: vibration of contact rings;
§  for turbo and hydro generators: vibration of the core and the frontal parts of the 

stator winding.
Accelerometer mountings (DSTU ISO 5348: 2009) with the help of:
§  hairpins;
§  methyl cyanoacrylic adhesive;
§  beeswax;
§  double-sided adhesive tape;
§  vacuum mounting;
§  a magnet;
§  hand probe.
Accuracy of measurements — according to GOST 25275-82 / ST SEV 3173-81. 

The electrical control device must have an electrical calibration device that must 
output a harmonic signal at a frequency of 79,6 Hz; The error of electrical calibration 
of vibration measuring instruments should not exceed 5 %; The basic error in 
measuring the harmonic vibration within the working part of the scale should not 
exceed 10 %.

Taking into account the above main provisions of the standards regarding the 
equipment for measuring and diagnosing electrical equipment, we turn to the conside-
ration of the general structure and especially the construction of DS diagnostics.

1.2.1. Features of construction of systems 
for diagnosing energy objects

From the above list of diagnostic parameters and signals it follows 
that the latter have sufficiently wide dynamic and frequency ranges. With this in mind, 
modern AIS EM diagnostics should be universal, i. e. capable of measuring, recording, 
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and processing diagnostic signals of a different physical nature, as well as dynamic 
and frequency ranges. Let us briefly dwell on these questions.

The generalized block diagram of the modern multichannel IMS of functional 
diagnostics is shown in Fig. 1.2. It consists of:
§  measuring transducers designed to measure the various physical processes that 

accompany the operation of the object;
§  analog part intended for preliminary processing of the measured information 

(coordination of resistances, amplifications, filtering, etc.);
§  interface between the analog and digital parts, whose role is reduced to con-

verting the measured signals into digital form and transferring them to the digital part 
of the DS;
§  a digital part intended for the subsequent processing of information (for 

example, digital filtering) and analyzing the state of the object in accordance with a 
predetermined algorithm, detecting and classifying defects;
§  user interface, through which the operator performs control of the operation of 

the system and receives information about the state of the object.
The digital part of IIS diagnostics in most cases is a personal computer that 

operates under the control of specialized software. In IIS diagnostics of geographically 
distributed objects, or if access to nodes that are diagnosed is complicated (for 
example, permanently rotating blades of wind power aggregates), it is possible to use 
special channels for transmitting information from measuring converters over 
considerable distances (over a radio channel, fiber-optic lines and the like).

The development of diagnostic tools for a particular type of equipment is 
associated with the solution of the following main tasks [1, 2]:
§  the definition of the class of possible defects (the most important or most 

frequently encountered) that must be identified;
§  selection of diagnostic signals available for measurement, and control points on 

the object under study;
§  development of a mathematical model of the diagnostic object, the analysis of 

which allows to substantiate possible diagnostic parameters;
§  development of algorithms for obtaining numerical values   of selected diagnostic 

parameters;

Fig. 1.2. Generalized block diagram of DS diagnostics
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§  construction of decisive rules for identifying and classifying defects;
§  creation or technical means that implement certain stages of the diagnostic 

process: from measuring the selected diagnostic signals to making diagnostic decisions.
For the first task, basically, statistical material on failures is required. To solve 

the second task, it may be necessary to make constructive changes to the diagnostic 
object in order to ensure the fastening of the respective measuring transducers.

The solution of the third and fourth problems are interrelated, namely, from the 
developed mathematical model of diagnostic signals measured at the diagnostic 
object, algorithms for obtaining numerical values   of the selected diagnostic para-
meters depend.

In solving the fifth problem, the defining moment is the type of the developed 
mathematical model (deterministic or statistical). Depending on the chosen model, 
the construction of decision rules is carried out, which allow to define and classify the 
types of defects in the nodes of the diagnosed equipment.

The solution of the last task related to the development of the DS diagnostics 
proper is carried out on the basis of the results of the solution of the five problems 
formulated above. Basically, this applies to various types of software that are equipped 
with the developed DS.

1.2.2. Informational support of systems

The term information support requires a certain interpretation and 
specification, since information support is an integral product of a significant number 
of components that make up the so-called soft component of diagnostic systems. For 
example [3, 5], information support in information systems is a set of forms of 
documents, normative databases and implemented solutions for the volumes, location 
and forms of information existence. To this kind of information security, the 
requirements of integrity, completeness, reliability, protection against unauthorized 
access, unification, minimization of the volume in the transmission and preservation 
are put forward.

If we talk about the work of modern hardware and software systems, then from 
the point of view of reliability, the hardware of systems is aging means, since the action 
of such processes as aging, changing characteristics, parameters, elements in time, 
etc. significantly limit the time interval of their work. Information support is referred 
to as ageless means, therefore, in the process of working such software, primarily 
software, reduces the number of errors and has a significant time period of application. 
In turn, increasing the load on information support when performing the specified 
monitoring, monitoring and diagnostic functions makes it possible to increase the 
reliability of such systems as a whole.

It is well known that, on the other hand, the potential capabilities of modern 
computer facilities can be realized by various software variants that can largely provide 
the solution of various research problems without changing the hardware of computer 
systems and, thereby, save money and time to develop new and modernize existing 
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ones systems. In general, information support is an important information resource 
for the development of various objects, systems, complexes.

The integrated level of information support of technical systems is determined at 
each stage of the development of science and technology (dozens of years), the 
development of the scientific and methodological basis, primarily theoretical, 
including the mathematical apparatus.

Along with servicing existing monitoring systems, information support should 
serve as a basis for creating a scientific and technical basis for the development of 
prospective systems. If one tries to introduce a certain classification of information 
support of technical systems, different classification characteristics can be taken as a 
basis. So following signs of classification characterize both current, and perspective 
variants of performance of the set functions by monitoring and diagnostic systems, for 
example:
§  functionally-current information support, which remains largely unchanged du-

ring the development, implementation and operation of the current system sample;
§  innovative information support, which reflects both the results of operation of 

exis ting monitoring and diagnostic systems, as well as new developments in various 
fields of science and technology.

With this in mind, the following classification is quite reasonable:
§  a priori support at the first stages of the life cycle of systems, namely at the stages 

of design, manufacture, testing, when the calculation characteristics and parameters 
of the system are mainly used;
§  a posteriori support is mainly used in the operation stages and in part of the 

system tests and the content is an adjusted security, the application of which enables 
the calculation characteristics to be corrected and to obtain real system characteristics, 
including reliability characteristics, residual life by statistical estimation of real 
measurement data, diagnosis and prognosis.

Other signs of classification of information support in more detail reflect the 
monitoring and diagnostic process:
§  theoretical, algorithmic and software, or scientific and technical, at all stages of 

the application of these systems. Particularly responsible role of its use at the initial 
stages, when physical and mathematical models and systems are being developed, the 
system structure is substantiated based on the results of computer modeling, the 
design characteristics, parameters of the system’s performance of given functions are 
determined;
§  production and technological support at the stages of preparation of production, 

production of experimental and serial models of the system;
§  normative and technical support is used at all stages, but the main role is played 

by testing, certification, transfer to operation and at the stage of operation, repair and 
modernization of the system.

Such a general view of information support is presented in Fig. 1.3.
The weight and importance of each of these types of information support is 

different at different stages of the life cycle of monitoring and diagnostic systems. The 
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regulatory and technical and de sign information technology services con sist of a 
generally accepted regulato ry framework, standards, guideli nes, existing databases, 
and sanitary norms. Their main function is to inform the existing systems that im-
plement known, generally accep ted principles and methods of diagnosis. In a sense, 
they can be viewed as a routine component of information support.

Scientific and technical information support is oriented to a greater extent for 
use in innovative developments. Such developments primarily include:
§  improvement of existing systems and development of fundamentally new 

monitoring and diagnostic systems;
§  expansion of the scope of their application and range of controlled characteristics 

and parameters;
§  increase the effectiveness of monitoring systems based on the use of new 

physical effects and phenomena for constructing the converter components of 
systems;
§  new models of information signals, their characteristics and parameters, which 

most adequately reflect the objective reality;
§  new methods of information processing, methods for identifying and 

highlighting the most informative diagnostic features;
§  wide application of methods of statistical analysis of experimental data;
§  inclusion in the range of controlled new information characteristics;
§  evaluation of reliability of hardware and software monitoring and diagnostic 

systems;
§  forecasting the state of monitoring and diagnostic systems.
Therefore, scientific and technical information support systems for monitoring 

and diagnostics of energy facilities should be based on the achievement of funda-
mental and applied technical sciences, primarily mathematics, physics, informatics, 
mathematical statistics, reliability theory of technical systems, computer engineering, 
and the like.

 The authors did not intend to cover in this work the whole range of issues related 
to information support for diagnostic systems. In our opinion, the most important for 
accelerating the development of diagnostic systems is the scientific and technical 
component of their information support. It is these issues that are considered in this 
monograph.

Fig. 1.3. Conditional general classifica-
tion of information support
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1.3. PHYSICAL PROCESSES 
CHARACTERIZING THE TECHNICAL 
CONDITION OF ENERGY FACILITIES

Consider the basic physical processes (diagnostic signals) that are 
used in the diagnosis of EE.

First of all, it should be noted that in the operated EO there are both mobile and 
fixed nodes. This affects both the ways of measuring the diagnostic signals, and the 
methods of processing them (filtration, accounting for the cyclicity due to the 
frequency of the rotating electromagnetic field, etc.). This circumstance must be 
taken into account when choosing a mathematical model for describing the physical 
processes under study at the EO nodes. Here we will dwell on the main features of 
various diagnostic signals.

Many models are based on the fact that at the point of measurement at any fixed 
time the process under investigation can be considered as the result of imposing a 
large number of perturbing factors characterizing the energy coming from different 
random sources located in space at some distance from this point. Such models can 
be used in describing noise and vibration processes and fields, acoustic emission 
processes that arise in a solid under its mechanical loading or, for example, the 
processes of the occurrence of electrical discharges in insulation when high voltage is 
applied. Random nature in electrical equipment is also a process that has some 
stochastic cyclicity. These include the unevenness of the rotation of the shafts of 
diesel-electric aggregates, rolling bearings, etc.

As shown in [1], mechanical movements or vibrations are one of the most informative 
processes that can be used to diagnose EE. Proceeding from this, let us dwell on the 
appearance of perturbing forces in various nodes of EM, causing their vibration.

Technical diagnostics of energy facilities should be carried out using methods of non-
destructive testing, after which the objects can be further used for their intended purpose.

A class of physical methods of non-destructive testing are methods based on the 
action of physical fields or substances on an object or on the registration of fields 
created by the object of control itself.

Nondestructive testing, depending on the physical phenomena underlying it, is 
divided into species (DSTU 2865-94): magnetic; electric; eddy current; radio wave; 

thermal; optic; radiation; acoustic; penetrating substances.

Within the framework of each type of non-destructive testing, there are currently 
a large number of different methods that are classified according to the following 
criteria (GOST 2865-94):
§  the nature of the interaction of physical fields or substances with the object of 

control;
§  primary informative parameter;
§  way of obtaining primary information.
We give a brief description of the types of nondestructive testing and methods 

based on the nature of the interaction of physical fields with the object of control.

Babak_КНИГА_N.indd   24 21.03.2018   14:42:10



25

1. 3. Physical processes characterizing the technical condition of energy facilities

Magnetic non-destructive testing is based on the analysis of the mutual fashion of 
the magnetic field with the object of control. Methods of this kind do not classify by 
the nature of the interaction of the field with the object.

The magnetic form is usually used to control objects from ferromagnetic materials. 
With the help of magnetic methods, quenching and grinding cracks, hair, fatigue 
cracks and other surface defects with a width of several millimeters can be found.

Electrical non-destructive testing is based on the registration and analysis of the 
parameters of the electric field interacting with the object of control or the field arising 
in the object of control as a result of external influence. By the nature of the interaction 
of the field with the object, the methods are: electric; triboelectric; thermoelectric.

The electrical view is applied to the control of items made of electro-transparent 
materials, electrical equipment, deviations of the shape of the object.

Eddy current non-destructive testing is based on the analysis of the interaction of 
an external electromagnetic field with the electromagnetic field of the eddy currents 
induced in the object of control. By the nature of the interaction of the field with the 
object, the methods are:
§  penetrating radiation;

§  reflected radiation.

Eddy current view is used only for products made of electrically conductive 
materials. The peculiarity of the eddy current control is that it can be carried out 
without contact between the converter and the object, which makes it possible to 
obtain good control results even at high velocities of the objects.

Radio wave non-destructive testing is based on the registration and analysis of 
changes in the parameters of the electromagnetic field of the radio range, which 
interacts with the object of control. Usually, radio waves of wavelength 1...100 mm are 
used. By the nature of the interaction of the field with the object, the methods are:
§  penetrating radiation;

§  reflected radiation;

§  scattered radiation;

§  resonant.

The radio wave form is used to control products from materials in which radio 
waves do not strongly decay, for example, dielectrics, ferrites, thin-walled metallic 
objects.

Thermal non-destructive testing is based on the recording and analysis of changes 
in thermal or temperature fields of control objects caused by defects. By the nature of 
the interaction of the field with the object, the methods are:
§  thermal contact;

§  convective;

§  own radiation.

Thermal view is used to control various objects from any materials.
Optical non-destructive testing is based on recording and analyzing the parameters 

of optical radiation interacting with the object of control. By the nature of the 
interaction of the field with the object, the methods are:
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§  transmitting radiation;

§  reflected radiation;

§  scattered radiation;

§  induced radiation.

Optical control methods have low sensitivity, therefore they are used exclusively 
for detecting large surface defects, leak marks, residual deformations, structural 
damage, etc.

Radiation non-destructive testing is based on the registration and analysis of 
ionizing radiation after interaction with the object of control. Depending on the 
nature of the ionizing radiation, the radiative form is divided into subspecies, for 
example, X-ray, neutron, and the like. By the nature of the interaction of the field 
with the object, the methods are:
§  penetrating radiation;

§  scattered radiation;

§  activation analysis;

§  characteristic radiation.

The radiation view is used to control objects from various materials — large cast 
parts, thick-walled blanks and welded joints.

Acoustic nondestructive testing is based on recording and analyzing the parame -
ters of elastic waves that are excited or appearing in the object of control. When using 
elastic waves of the ultrasonic range (over 20 kHz), the term "ultrasonic" is usually 
used instead of the term "acoustic". By the nature of the interaction of the field with 
the object, the methods are: penetration; reflections; resonant; impedance; free vibra-

tions; acoustic emission.

Table 1.2. Sources and types of noise and rhythm signals

Signals Sources Types signals

Boilers Temperature fluctuation

Gas turbines Aerodynamic noise and vibration, friction-sliding noise, signals
acoustic emissionSteam turbines

Gas piston engines

Electric generators Aerodynamic noise and vibration, friction-sliding noise, signals 
acoustic emission, magnetic noises, contact noise in collector-brush 
assemblies

Electric motors

Piping of boiler plants Acoustic leakage signals, acoustic emission signals

Pumps, compressors Hydrodynamic noise and vibration

Fans Aerodynamic noises and vibrations

Heating network pipelines Hydrodynamic noise and vibration, acoustic emission signals, 
acoustic leakage signals

High-voltage equipment Partial discharges, magnetostrictive noise in transformers
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Acoustic methods are widely used in the control of welded joints, hulls, pressure 
vessels, large cast parts, thick-walled billets, etc.

Non-destructive testing by penetrating substances is based on the penetration of test 
substances (liquid or gas) in the cavity of defects in the object of control. The methods 
of this species are divided into two subspecies — capillary and percolation.

Methods of leakage are used only to detect end-to-end defects, capillary methods 
to identify invisible or poorly visible surface and through defects in control objects.

In the process of operating power equipment, the main role is played by the 
systems of functional diagnosis, the source of information in which are noise and 
rhythmic signals arising from the natural functioning of objects.

Noise signals are a consequence of aerodynamic, hydrodynamic and tribome-
chanical processes accompanying the operation of power equipment units, and are 
manifested in the form of acoustic, magnetic, electric, thermal noise or broadband 
vibrations.

Rhythmic signals are the result of interaction of parts in the kinematic pairs of 
gas turbines, gas piston engines, electric machines, compressors, etc., and are 
manifested, as a rule, in the form of narrowband multifrequency vibrations.

In Table 1.2 shows the sources and types of noise and rhythmic information 
signals in power equipment.

It should be noted that the systems of functional diagnostics, based on the use of 
noise and rhythm signals, are widely used to determine the technical state of power 
equipment [1, 2, 3].

Among such systems, the most widely used acoustic emission systems [1, 2, 3] 
diagnoses, which are based on the use of noise signals. In turn, models of rhythmic 
signals are used in the construction of vibrodiagnostic systems [6, 8, 9].
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CHAPTER  2
METHODS AND MODELS 
FOR INFORMATION 
DATA ANALYSIS

LINEAR RANDOM PROCESSES

Many information signals like vibrations, acoustic emission signals, 
control signals, etc., can be represented as a response of some linear 
system on the white noise action [15, 16]. 

Now we try to make more exact the white noise models and 
make more detailed mathematical descriptions, definitions, and 
practical applications of the white noise processes.

The first detailed investigation of white noise processes was 
made by K. Ito in 1954. However, the beginning of the white noise 
theory can be traced back to the 1930’s to the works of A. Kolmogorov 
and A. Khinchin [14], where the processes with independent 
increments closely related to white noise were considered.

In the most simple case, in technical applications, white noise 
can be defined as a generalized process with non-correlated values 
{ }( ),t t Tς ∈  such that

 [ ( )] 0,M tς = 2[ ( ) ( )] ( ),M t tς ς + τ = κ δ τ  (2.1)

where δ (τ) is a Dirac delta function. The stochastic process is 
generalized and stationary. The correlation function of the process 
is also a generalized one and is determined as 

 2( ) ( ), ,R Tτ = κ δ τ τ∈  (2.2)

where κ
2
 > 0 is an intensity of the white noise. In the case of the 

nonstationary white noise, the parameter κ
2
 will depend on time t.

White noise allows a spectral decomposition

1
( ) ( ),

2
i tt e dz

∞
ω

−∞

ς = ω
π ∫

where z (ω) is a process with noncorrelated increments.
The infinitesimal "elementary oscillations" eiωtdz (ω) have 

equal infinitesimal mean power and are mutually noncorrelated at 
any frequencies (ω) because of noncorrelated increments of the 
process z (ω). The mean square of their infinitesimal amplitude has 

2.1.

Babak_КНИГА_N.indd   28 21.03.2018   14:42:10



29

2.1. Linear random processes

a mathematical expectation

 
2

2( ) , ( , ).M dz dω = κ ω ω∈ −∞ ∞  

The Gilbert stochastic process with representation (2.2) is called Loeve harmo-
nizable process. However, the white noise cannot be considered as the Loeve 
harmonizable stochastic process, because it is not a Gilbert process: it does not have 
finite variance or finite mean power. Nevertheless, in a general sense, the white noise 
can be considered as a harmonizable one. Then, its generalized harmonizable 
correlation function can be derived from (2.2) and is determined as

 2

1
( ) ( ).

2
iR e d

∞
− ωτ

−∞

τ = κ ω
π ∫  (2.3)

Thus, the white noise with continuous time has constant spectral power density 
at infinite fre quency bound and equals to

 S (ω) = κ
2
 ,   ω ∈ (–∞, ∞), 

i. e., the power of every infinitesimal harmonic component equals to κ
2
dω.

For the processes with continuous time the values of the white noise process in 
the strong sense and of the process with independent increments are connected by an 
equation

 
0

( ) ( ) , [0, ],
t

t d tη = ς τ τ ∈ ∞∫  

where { }( ), [0, )t tς ∈ ∞  is a white noise in the strong sense with continuous time. The 
increments η (τ)  at the noncrossing intervals are independent. If there exist a difference 
limit for Δs

η (τ) = η (τ) – η (s), i. e.,

 0

( )
lim ,

s

s s
τ τ− →

∆ η τ
ς =

τ −  

then the limit process ς
τ
 is the white noise process in the strong sense with continuous 

time. However, in a general sense, such a derivative does not exist and the white noise 
with continuous time can be considered as a generalized process.

In contrast to the white noise with continuous time, the processes with 
independent increments are physically possible.

Homogeneous characteristic function of the process with independent increments 
{ }( ),t t Tη ∈  is determined as
 ( )( , ) .iu tf u t Me η

η =  (2.4)

The one-dimensional characteristic function of  f (u; s, τ) of increments Δs
η (τ) is 

determined as
 ( )( ; , ) .

siu tf u s Me ∆ ητ =  

A remarkable feature of the characteristic function (2.4) of the homogeneous 
processes with independent increments is that the corresponding distribution function 
belongs to the class of infinitely divisible ones, as described b Levy. A canonical 
representation of the characteristic function in Levy form is
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2
2

2
ln  ( , ) 1 ( ) , ( , ),

2 1
iu x iu x

f u t t i u u e dL x t
x

∞
ε

η
−∞

 δ ε  = µε − + − − ∈ −∞ ∞  +   
∫  (2.5)

where μ and δ > 0 are some constants, ε = signtL(x) is a Poisson jump spectrum in 
Levy form. It is noteworthy that ( , ) ( ; 0, )f u t f u tη ≡ .

As was mentioned, the white noise with continuous time is a generalized stochastic 
process and it is not described by a distribution function, as such a function does not 
exist. The notions a Gaussian or a Poisson white noise indicate that the integral 
between boundary time interval has corresponding Normal or Poisson distribution, 
respectively.

White noise forms the basis of linear stochastic processes. Now we discuss a 
problem of statistical simulation of such signals. The problem, in general wording, 
consists in obtaining of a sequence of pseudo random values with the given probability 
characteristics. The proposed problem solving approach is based on the Linear 
Stochastic Process Theory [15] and it can be considered to be a development of 
innovation process method [17]. At first we state some knowledge of the Theory, and 
classify the simulating processes. Then we define concretely the simulation problem 
statement and discuss a method of solving.

A linear stochastic process (LSP) is a functional of the following form

 
( ) ( , ) ( ),    ( , ),t t d t

∞

−∞

ξ = φ τ η τ ∈ −∞ ∞∫  (2.6)

where 2( , ) ( , )t Lφ τ ∈ −∞ ∞  with respect to τ for all t is a non-stochastic real Hilbert 
function; ( ), (0) 0, ( , )η τ η = τ∈ −∞ ∞  is a Hilbert stochastically continuous random 
process with independent increments that is often called a generating process. While 
solving many problems including statistical simulation it is convenient to consider the 
LSP as a response of a linear filter with the impulse transient function ϕ (τ, t) on the 
action of the white noise η'(τ). It is understood that the η'(τ) is a generalized derivative 
of the corresponding process with independent increments. 

As is shown in the paper [15], the LSP is an infinitely divisible process, that is, its 
finite-dimensional characteristic functions (CFs) are infinitely divisible ones. 
Therefore, the CF can be represented in one of the three canonical forms. Since the 
process ξ (t) is the Hilbert one, we use the Kolmogorov representation form

 

2

( , )
( ; ) exp ( ) {e 1 } ,ixu

dK x t
f u t ium t ixu

x

∞
ξ

ξ ξ
−∞

   
= + − −  

   
∫  (2.7)

where ( ) ( ); ( , )m t t K x tξ ξ= ξM  is a jumps’ spectrum in Kolmogorov form. We remark, 
the CF f

η
(u, t) of the process η (τ) can be represented analogously because it is infinitely 

divisible too [21]. The f
η
(u, τ) is defined uniquely by pair (m

η
(τ), K

η
(x, τ)).

Extending the results of the paper [17] to the non stationary case we obtain 
expressions, which determine the process ξ (t) characteristic’s relation to the 
corresponding ones of the generating process η (τ):
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2

( ) ( , ) ( );

( , ) ( , ) ( ( , )) ( , ) ,
z

m t t dm

K x t t U x z t d K z

∞

ξ η
−∞

∞ ∞

ξ τ η
−∞ −∞

= φ τ τ

= φ τ − φ τ τ

∫

∫ ∫
 

(2.8)

where U (s), s ∈ (–∞, ∞) is the Heaviside function. 
LSPs cover a wide class of stochastic processes. It is convenient to divide the class 

into subclasses and to introduce the corresponding terminology. As it is shown from 
(2.6) LSPs can be classified by the two main features: type of the generating process 
η (τ) and type of the function ϕ (τ, t). Let us consider the matter in detail.

 It is known [15] any stochastically continuous process with independent 
increments can be represented as a sum of two stochastically independent components 
which may be not present simultaneously: Gaussian and Poisson. We call the 
components as processes of Gaussian and Poison types. The first type contains the 
homogeneous (Wiener) and non-homogeneous Gaussian processes with independent 
increments. Simple Poisson processes, renewal processes and their linear combina-
tions, generalized Poisson processes with independent increments belong to the 
second type. Being generated by each of the mentioned processes LSPs possess some 
typical properties. This fact is taken as a principle of the classification. For example, 
it can be shown that if the generating process is of the Gaussian type, the corresponding 
LSP is a Gaussian stochastic process. Poisson type of generating process leads to LSPs 
describing impulse currents. We call such processes as impulse LSPs.

The type of integral representation kernel ϕ (τ, t) also influences typically the 
probability properties of the resulting process. As has been mentioned above, the 
physical meaning of some forming filter’s impulse transient function can be attached 
to the ϕ (τ, t). For example, the exponential kernel corresponds to the case of a low 
pass filtration, and the exponential cosine kernel corresponds to the band pass 
filtration case. By analogy with the forming filter’s type we often call the corresponding 
LSPs as RC- and RLC-noises.

Thus, we here reveal briefly the main principle of LSPs’ classification. The 
detailed discussion will be given in the paper. 

Suppose, the signal being modelled is described by the LSP (2.6), and the latter 
is defined by pair m

ξ
(t), K

ξ
(x, t). Then the statistical simulation problem can be 

formulated in the following way.
Statement. We have to obtain a pseudo random sequence of values ξ (kΔ t),
,  ( , )k t∈ ∆ ⊂ −∞ ∞Z , if the mean m

ξ
(t), jumps’ spectrum K

ξ
(x, t) and function φ (τ, t) 

are given. 
Solution. We notice immediately, that the process of solving is reduced to the 

determination of generating process η (τ) characteristics. We restrict ourselves by 
the case m

ξ
(t) = m

ξ
 = const; K

ξ
(x, t) = K

ξ
(x) that takes place, in particular, when 

ϕ (τ, t) ≡ ϕ (s), s = t – τ and the generating process is homogeneous, that is m
η
(τ) = 

= m
η
∙ τ; K

η
(x, τ) = |τ| K

η
(x). Let us make a preliminary computation. 
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Rewrite the expressions (2.8) with reference to the assumption

 2( ) ; ( ) ( ) ( ( ))  ( ).m m s ds K x s U x z s ds dK z

∞ ∞ ∞

ξ η ξ η
−∞ −∞ −∞

= φ = φ − φ∫ ∫ ∫  (2.9)

Since ( ) 0s ds

∞

−∞

φ ≠∫ , it follows from the first expression (2.9)

 

( ) .m m s ds

∞

η ξ
−∞

= φ∫  (2.10)

The second of (2.9) can be represented in an operator form

 K
x
(x) = AK

h
(z). (2.11)

If the inverse operator -1
A  exists, then 

 
( ) ( ).K z K xη ξ= -1

A  (2.12)

The following reasoning concerns the function K
η
(z). It is known, if K

η
(z) has a 

jump at zero, that is 

 
K

η
(0+) – K

η
(0–) = σ2 ≠ 0, (2.13)

the Gaussian component of the process η (τ) is present. By force of the above 
supposition, the σ2 is finite. Therefore, the jump at zero can be eliminated. Following 
Kolmogorov [14], we introduce a continuous at zero function

 
2

( ), 0;
( )

( ) , 0.

K z z
K z

K z z

η

η

η

<
= 

−σ ≥
 (2.14)

If simultaneously σ2 ≠ 0 and ( ) 0K zη ≡  then the generating process contains both 
components. Let us consider this general case.

From the above mentioned we can write 

 1( ) ( ) ( ),   ( , ),wη τ = τ + π τ τ∈ −∞ ∞  (2.15)

where {w (τ), w (0) = 0} is the Gaussian process with independent increments; {π
1
(τ), 

π
1
(0) = 0} is the generalized Poisson process with independent increments. Taking 

into account the stochastic independence of the processes w (τ) and π
1
(τ), the 

characteristic function f 
η
(u; τ) is represented as a product 

 
f 

η
(u; τ) = f 

w
(u; τ) · f 

π
(u; τ), (2.16)

where

 

2 2

( ; ) exp
2w w

u
f u ium

  σ 
τ = τ −  

   
 (2.17)

is the CF of the Gaussian component with 2( ) ; ( ) ;
w

w m wτ = τ τ = σ τM D  

 

2

( )
( ; ) exp (e 1 ) ,iuz

dK z
f u ium iuz

z

∞
η

π π
−∞

   
τ = τ + − −  

    
∫  (2.18)

ˆ

ˆˆˆ
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is the CF of the Poisson component with 1 1( ) ; ( ) ( ) ;m Kπ ηπ τ = τ π τ = ∞ τM D  moreover 
m

η
 = m

w
 + m

π
; û  = u ∙ sign (τ).

The simulation of the Gaussian component is not difficult if the m
w
 and σ2 are 

known. As for one of the generalized Poisson process, it is necessary to have a jump’s 
distribution function F (y) and intensity λ of the jumps.

Taking into account [17] that 
 λ = F

1
(∞), (2.19)

we have 

 
λ = F

1
(∞), (2.20)

where zero is excepted from the integration domain.
From distribution function’s properties it follows that λ = F

1
(∞), then 

 
F (y) = F

1
(y) / λ. (2.21)

We can now calculate

 1( ) ( ),
x

m ydF y ydF y

∞ ∞

−∞ −∞

= λ =∫ ∫
  

m
w
 = m

η
 + m

x 
. (2.22)

Thus, the necessary characteristics for statistical simulation of the process ξ (t) as 
a response of linear filter on the known action are found. 

2.2. LINEAR AR AND ARMA PROCESSES

Now we consider a problem of statistical simulation of discrete time 
linear random processes (LRPs). One of the most interesting models of such class is 
a linear autoregressive process (AR-process) and linear autoregressive moving-average 
process (ARMA-process). We show some methods of the process’s representation 
and formulate the simulation problem for this case.

2.2.1. Kernels of Linear AR and ARMA processes 

The linear stationary AR-process, by definition, can be represented as 

 1

, ,
p

t i t i t

i

a t Z−
=

ξ = − ξ + ς ∈∑  (2.23)

where { , 0, 1, }
j j

a a j p≠ = , a
1
, ..., a

p
 are real-valued autoregression parameters; Z — is 

a set of integers; p — is the order of autoregression; ,
t

t Zς ∈ — is a generating process. 
We consider the AR-processes that are stochastically equivalent to the process 
embedded on a discrete equidistant lattice in respect to the process (2.23). We call 
such AR-processes as linear ones, and henceforce we deal with these processes only.

Stationary AR-processes admit a Wold representation 

 
1

( ) ,
t AR t

∞

−τ
τ=

ξ = φ τ ς∑  (2.24)

where ϕ
AR

(τ) is a kernel of the linear process [18]. It is assumed that 
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2

0

(0) 1; ( ) .
AR AR

∞

τ=

φ = φ τ < ∞∑  (2.25)

The kernel ϕ
AR

(τ) is recursively connected with autoregression parameters [18]:

 
ϕ

AR
(0) = 1, if p = 1, ϕ

AR
(s) = –a

p
 ϕ

AR
(s – 1); s = 1, 2, ... . (2.26)

If p > 1: 

1

( ) ( )   if   1, 1,
s

AR j AR

j

s a s j s p
=

φ = − φ − = −∑

1

( ) ( )   if   , 1, ... ,
p

AR j AR

j

s a s j s p p
=

φ = − φ − = +∑
where ϕ

AR
(τ) — is a kernel of linear stationary AR-process 

 

1

1

0                          0,

1                          0,

( ) ( )     1, 1,

( )     , 1.

k

AR AR

p

AR

k

k

a k k p

a k k p p

τ
τ=

τ
τ=

<
 =


φ τ = φ − τ = −



φ − τ = +


∑

∑
 

(2.27)

A linear stationary ARMA process can be defined as 

 
1 1

,
p q

t i t i t j t j

i j

a b− −
= =

ξ = − ξ + ς + ς∑ ∑  (2.28)

where { , 0, 1, }
j j

a a j p≠ = — are autoregressive parameters; p — is the order of 
autoregression; { , 0, 1, }

j j
b b j q≠ = , b

j
 — are moving-average; q — is the order of 

autoregression ϛ
t
 is the generating process. It is an infinitely divisible process with 

independent values. 
Linear stationary ARMA processes can be also represented 

 
1

( ) ,
t t ARMA t

∞

−τ
τ=

ξ = ς + φ τ ς∑  (2.29)

where ϕ
ARMA

(τ) — is a kernel of linear stationary ARMA process 

 

1

1

0                                         0,

1                                         0,

( ) ( )      1, 1,

( )      , 1.   

k

ARMA k ARMA

p

k ARMA

k

k

k b a k k p

b a k k p p

τ
τ=

τ
τ=

<
 =


φ = + φ − τ = −



+ φ − τ = +


∑

∑

 (2.30)

It is shown in the papers [19-21] that the linear AR processes and Linear ARMA 
processes is an infinitely divisible process, that is, its finite-dimensional characteristic 
functions (CFs) are infinitely divisible ones. Therefore, the CF can be represented in 
one of the three canonical forms . 
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Linear autoregressive process with periodic structures { , }
t

tξ ∈Ζ  defined over the 
set of integers Z = {..., –1, 0, 1, ...} are represented in chapter 2.4. 

2.2.2. Characteristic functions 
of linear AR and ARMA processes

The process ξ
t
 is assumed to be strictly stationary, and adheres to the ergodic 

theorem [21, 32]. The process ξ
t
 has a Kolmogorov representation one-dimensional 

form logarithm of characteristic function (CF):

 

2

( )
ln  ( , ) ln  ( ,1) { 1 } ,iux

dK x
f u t f u im u e iux

x

∞
ξ

ξ ξ ξ
−∞

= = + − −∫
 

(2.31)

where parameter m
ξ
 and spectral functions of jumps K

ξ
(x) define unequivocally the 

characteristic function. 
The logarithm of the one-dimensional characteristic function of the linear 

stationary autoregression process can be written in the form

        

( )

2

( )
ln  ( , ) ln  ( ,1) ( ) ( 1 ( )) ,iux

dK
f u t f u im u e iux

x

∞∞ ∞
ζφ τ

ξ ξ ζ
τ=−∞ τ=−∞ −∞

τ
= = φ τ + − − φ τ∑ ∑ ∫   (2.32)

where parameters m
ϛ
 and K

ϛ
(x) define the characteristic function of the generative 

process ϛ
t
 while φ (τ) is the kernel of the linear random process ξ 

t 
. The parameters m

ξ
 

and m
ϛ
, and Poisson spectra of jumps K

ξ
(x), K

ϛ
(x) are interrelated as follows

 0

( ),m m
∞

ξ ζ
τ=

= φ τ∑ ( ) ( , ) ( ),K x R x y dK y

∞

ξ φ ς
−∞

= ∫
 

(2.33)

where R
ϕ
(x, y) is so-called transformation kernel, which is invariant with generative 

process ϛ
t
 and uniquely defined by the coefficients { , 0, 1, }

j j
a a j p≠ =  or 

{ , 0, 1, }
i i

a a i p≠ =  and { , 0, 1, }
j j

b b j q≠ = .
Singularities of the R

ϕ
(x, y) are discussed in the papers [21-22]. Inverse kernel 

R
ϕ

– 1(x, y) exist and the inverse integral transform exist also:

 

1( ) ( , ) ( ).K y R x y dK x

∞
−

ς φ ξ
−∞

= ∫  (2.34)

Sometimes, application require finding statistical characteristic of the generating 
process ϛ

t
 in autoregression parameters { , 0, 1, }

j j
a a j p≠ =  or { , 0, 1, }

i i
a a i p≠ =  and 

moving average parameters { , 0, 1, }
j j

b b j q≠ =  are known. Statistical characteristic of 
observed Linear AR process or linear ARMA process are known. Occasionally, such 
a problem is referred to as an inverse problem.

It is known [15] any stochastically continuous process with independent 
increments can be represented as a sum of two stochastically independent components 
which may be not present simultaneously: Gaussian and Poisson. We call the 
components as processes of Gaussian and Poison types. The first type contains the 
homogeneous (Wiener) and non-homogeneous Gaussian processes with independent 
increments. Simple Poisson processes, renewal processes and their linear combinations, 

Babak_КНИГА_N.indd   35 21.03.2018   14:42:10



36

CHAPTER 2. Methods and models for information data analysis

generalized Poisson processes with independent increments belong to the second 
type. Being generated by each of the mentioned processes LRPs possess some typical 
properties. The statement could be generalized to the random process with discrete 
time. This fact is taken as a principle of the classification and simulation algorithms. 

2.3. LINEAR RANDOM PROCESSES 
WITH PERIODIC STRUCTURES

Numerous phenomena in radio engineering, mechanical, and 
biophysical systems as well as their respective random functions exhibit characteristics 
which are repeated in time and space. The examples of such processes are shot currents 
in electronic tubes, noise in a periodic pulse generator, magnetic noise in cyclic 
magnetization of ferromagnetics, and signals at the output of linear systems with 
periodically changing parameters such as parametric amplifiers with periodic pumping. 

Mathematical models describing physical phenomena with pronounced periodic 
properties may take on the form of periodic, quasi-periodic, and periodically 
correlated random functions. A special case of periodic random processes is a class of 
stationary processes whose correlative theory was developed by A.Ya. Khinchin [14]. 

Further development of the theory of periodically correlated random processes 
as applied to description of modulated signals and processes occuring in radio 
engineering systems as well as for description of physical effects in acoustics and 
hydroacoustics is reflected in [16, 23-26]. 

To describe periodic processes in linear systems the deterministic approach is of 
common use since trigonometric functions are proper functions of any linear system. 

The random periodic processes studied by Slutskiy [23] may be defined as 
follows. 

According to Slutskiy, a real random process specified in some probabilistic 
space  {Ω, F, P} is a random process ξ (t), t ∈ (–∞, ∞) for which such T > 0 exists 
that the finite dimensional vectors 1 1 2( ( ), ( ), ..., ( ))

n
t t tΞ = ξ ξ ξ  and 2 1 2( ( ), ( ), ..., ( ))t T t T t TΞ = ξ + ξ + ξ + 

2 1 2( ( ), ( ), ..., ( ))
n

t T t T t TΞ = ξ + ξ + ξ +  are stochastically equivalent, in a wide sense, for all numbers 
n > 0, where t

1
, t

2
, ... is a set of separability of the process ξ (t). Recall that two random 

vectors are stochastically equivalent in wide sense if for every integer n > 0 their par -
tial distributions are coinciding, i. e. 1 2{ : ( ) } { : ( ) },   ,  .P B P B B Fω Ξ ∈ = ω Ξ ∈ ω∈Ω ∈

The main purpose of the paper is to make the periodic nonstationary random 
processes more exact in an infinitely divisible class by detailed mathematical 
investigation of the problem connected with the description, definition, and practical 
application of the processes.

According to [15, 16], for the time-continuous processes the values of white 
noise in a the restricted sense {ς (τ), P {ς (0) = 0} = 1}, τ ∈ (–∞, ∞) and those of the 
process with independent increments {η (t), t ∈ (–∞, ∞)} are related by the equation

 
0

( ) ( ) , ( , ),
t

t d tη = ς τ τ ∈ −∞ ∞∫
 

 (2.35)

while ς (τ) is stochastically equivalent to ς (–τ).
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In our case, η (t) is a non-homogeneous Hilbert process with independent 
increments. These exists a T > 0 for the process η (t), which is the basis for the following 
properties’ fulfillment:

 1 1 2 2( ) ( ); ( ) ( );d d T d d Tκ τ = κ τ + κ τ = κ τ +  

 ( , ) ( , ), ( , ),
x t x t

d d L x d d L x T tτ = τ + ∀ ∈ −∞ ∞  

where κ
1
(t) and κ

2
(t) are cumulant functions of the process η (t) while L(x, t) is its 

Poisson’s spectrum of discontinuities in Levi’s formula.  The T number is called a 
period while ς (τ), a periodic white noise.

The logarithm of a characteristic function of a real random process η (t) in Levi’s 
terms has the form

   
2

2

2

( )
ln ( , ) ( ) 1 ( , ) , ( , ),

2 1
iu x

x

D t iu x
f u t i t u u e d L x t t

x

∞
ε

η
−∞

 ε  = µ ε − + − − ∈ −∞ ∞  +   
∫  (2.37)

where D2(t), μ(t) are some variables, ε = sign t and L (x, t) is the Poisson spectrum of 
discontinuities in Levi’s representation.

Having used a nonhomogeneous random process with independent increments 
η (t), we may generate a random process in the form [15] 

 

( ) ( , ) ( ), ( , ),t t d t

∞

−∞

ξ = φ τ η τ ∈ −∞ ∞∫
 

(2.38)

where 2,( , )t L κφ τ ∈  is a real nonrandom numerical function of period t such that 

2
2( , ) ( ) ,t d

∞

−∞

φ τ κ τ < ∞∫  at each fixed t ∈ (–∞, ∞).

The {η (τ), η (0) t ∈ (–∞, ∞)} is a so-called generative process for which relations 
(2.36) are satisfied. Generally speaking, the process ξ (t) is a nonstationary random 
one. Extending to the complex-value case may be made in the usual fashion.

On the strength of the assumptions made and with the account of (2.36) and 
(2.37), the logarithm of the characteristic function of the Levi type corresponding to 
linear random process (2.38) becomes [17]:

 

2

( , )

2

ln ( , ) ( , ) ( ) ( , ) ( )

( , )
exp 1 ( , ),

1
ixu t

x

f u t iu t d t dD

iux t
d d L x

x

∞ ∞

ξ
−∞ −∞

∞ ∞
φ τ

τ
−∞ −∞

= φ τ µ τ + φ τ τ +

φ τ + − − τ + 

∫ ∫

∫ ∫
 

(2.39)

3

1 2
( ) ( ) ( , ),

1 x

x
d d d d L x

x

∞

τ−∞
µ τ = κ τ − τ

+∫ 2
2( ) ( ) ( , ),

x
dD d x d d L x

∞

τ−∞
τ = κ τ − τ∫

and, on the strength of (2.36):

( ) ( ); ( ) ( ).d d T dD dD Tµ τ = µ τ+ τ = τ +

Since conditions (2.36) and (2.37) are met,

( , ) ( ) ( , ) ( ),t d t T d

∞ ∞

−∞ −∞

φ τ µ τ = φ τ + µ τ∫ ∫

(2.36)
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2 2( , ) ( ) ( , ) ( ),t dD t T dD

∞ ∞

−∞ −∞

φ τ τ + φ τ + τ∫ ∫

( , )

2

( , )

2

( , )
exp 1 ( , )

1

( , )
exp 1 ( , ).

1

ixu t

x

ixu t

x

iux t
d d L x

x

iux t T
d d L x T

x

∞ ∞
φ τ

τ
−∞ −∞

∞ ∞
φ τ

τ
−∞ −∞

φ τ − − τ = + 

φ τ + − − τ + + 

∫ ∫

∫ ∫

Thus, an identity is valid such that

 
( , ) ( , ).f u t f u t Tξ ξ= +  (2.40)

That the process ξ (t) is of Hilbert’s type becomes obvious from the integrability of the 
squared ϕ (τ, t) and from Hilbert’s nature of η (t).

It is sometimes expedient to use for application purposes somewhat simpler 
models which may be regarded as a special case of process (2.38). Such models 
include:

a) linear random processes with an invariant kernel ϕ (τ, t) ≡ ϕ (t – τ) and a 
nonhomogeneous generating process η (t), i. e. the processes which may be set as

1 1( ) ( ) ( ),  ( , );t t d t

∞

−∞

ξ = φ − τ η τ ∈ −∞ ∞∫
b) stationary linear random processes determined as

2 2 1( ) ( ) ( ), ( , ),t t d t

∞

−∞

ξ = φ − τ η τ ∈ −∞ ∞∫
where η

1
(t) is a uniform Hilbert’s random process with independent values. Such 

random process ξ
2
(t) periodic in Slutskiy’s terms for each T ∈ (–∞, ∞).

c) processes with periodic kernel and generating homogeneous Hilbert’s random 
process η

1
(t). Such a process may be assigned as

3 3 1( ) ( ) ( ), ( , ).t t d t

∞

−∞

ξ = φ − τ η τ ∈ −∞ ∞∫

The kernel ϕ (τ, t) for such processes has a properly that ϕ (τ, t) ≡ ϕ (τ, t + T ).

Note that periodic, random processes in Slutskiy’s terms, are also periodically 
correlated random processes (PCRP). As a rule, PCRP were studied within the L2 
theory limits, and their correlative and spectral structure is known in sufficient detail. 
The main disadvantage of PCRP is that for such processes the general expression of 
their characteristic function is difficult to write down. For linear random processes 
the canonical form of characteristic function is simpler since such processes arc set 
constructively on the random processes basis having infinitely divisible distribution 
patterns. However, for nonstationary processes with similar distribution patterns the 
spectral structure is not seen directly. Thus, to describe nonstationary random 
processes having periodic structure it is expedient to generate models which could 
combine the benefits of PCRP and the random processes having the infinitely divisible 
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distribution patterns. Among those arc linear stochastically periodic processes (2.38) 
whose properties were discussed before.

Such models may find wide use, for instance, for solving modulation problems, 
and for describing the behaviour of radio engineering devices subject to additive as 
well as multiplicative interference. Let us consider this issue more thoroughly.

Here the so-called "multiplicative" model should be mentioned which has been 
widely practiced in the modulation problems, measurement theory, error estimating, etc.

Let ξ (t) be a random process describing the behaviour of a diagnostic system 
or section while f (t) is an arbitrary deterministic function taking no zero values over 
t ∈ (–∞, ∞). Then ξ (t) = ξ

1
(t) ∙ f (t), where ξ

1
(t) = ξ

1
(t) / f (t). Hence, the model 

ξ (t) = ξ
1
(t) ∙ f (t) may be used for describing the behaviour of the information signal 

if ξ
1
(t) is regarded as a multiplicative interference. By analogy, we may write: ξ (t) =  

= ξ
2
(t) + f (t) where f (t) is an arbitrary function of t, and ξ

2
(t) = ξ (t) – f (t). Thus, the 

abstract model both of additive and multiplicative type is of no use since it does not 
separate anything, i. e. from the mathematical viewpoint, any random process is an 
"additive" and "multiplicative" model at the same time. However, there are additive 
and multiplicative interferences. Having applied the theory of linear random processes, 
we may describe the action both of additive and multiplicative interference on radio 
engineering devices and sections.

Using a characteristic function of a linear random process permits to carry out a 
complete analysis of output signals of linear systems from the standpoint of non sta-
tionary periodic impacts, i. e., to calculate moments and distribution functions with 
the account of the properties of a generating process η

 
(t).

The application of such a model permits to generate pseudorandom sequences 
with desired probabilistic characteristics in the class of infinitely 

2.4. LINEAR AUTOREGRESSIVE PROCESSES
WITH PERIODIC STRUCTURES

Stationary autoregressive processes have found wide application in 
solving different diagnostic problems [19-21]. However, many processes in radio-
physics, radiolocation, telemetry, hydroacoustics, meteorology, astronomy, biome-
dical systems and, consequently, the random functions describing such processes 
possess the characteristics repeating in time or space. Such processes can be used to 
describe, for example, signals at the mixer output, where a periodic oscillation and 
stationary noise are applied to the mixer inputs; the signals of parametric amplifiers 
with repetitive pumping, signals of nonlinear self-oscillatory systems, output signals 
of linear systems with cyclically varying parameters, and magnetic noises during the 
cyclic ferromagnetic magnetization switching. By the period of process variation is 
usually meant a time or space interval of complete repetition of variations of process 
characteristics, though the proper values (realizations) of such random process may 
not have the same properties. In this case for mathematical simulation it is expedient 
to apply the random processes with periodic structures. 
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Now we deal with the consideration of singularities and specific properties of 
linear autoregressive processes with periodic structures. Such processes are the 
generalization of linear stationary autoregressive processes [19]. The peculiarity of 
the given processes is the possibility of their use for the description of non-Gaussian 
periodic random signals.

Real random process {ξ
t
, t ∈ Z } defined over the set of integers Z = {..., –1, 0, 

1, ...} is called the autoregressive process with periodically varying autoregression 
parameters. It can be written as follows:

 1 1( 1) ... ( ) ,
t t p t p t

a t a t p− −ξ + − ξ + + − ξ = ς
 

(2.41)

where a
p
(l ) are the autoregression parameters alternating in time with the same period 

i. e. a
1
(t ) = a

1
(t + T ), ..., a

p
(t ) = a

p
(t + T ); p > 0, p ∈ Z, ∀t ∈ Z is the order of 

autoregression, ϛ
t
 is the random process with discrete time and independent values 

having an infinitely divisible distribution law.
Autoregressive process has also the so-called state space representation [30]:

 X
t
 – 1 = A

p
(t ) X

t
 + B ϛ

t
 ,   ξ

t
 = C X

t
 + ϛ

t
  (2.42)

where X
t
 , is the state vector, 1[ , ..., ],p

t t t
X = ξ ξ

 1

( ) , 0,1, ..., 1,
p

p j

t i t i j

i j

a t j p−
− +

= +

ξ = − ξ = −∑
 

 

1 2 1 ( ) ( ) ( ) ( )

     1             0           0           0 

( )                                                

     0            0            0          0   

     0            0 

p p

p

a t a t a t a t

A t

−− − − −

=

…

…

⋮ ⋱ ⋮

…

, [1...0 0],

           1           0 

C B

 
 
 
  ′= =
 
 
 
 …

 

' — is the transposition symbol.
The Hilbert autoregressive process with periodically changing autoregression pa-

rameters can be specified in the form:

 
0

( , ) ,
t t

t
∞

−τ
τ=

ξ = φ τ ς∑  (2.43)

where ϕ (τ, t), |ϕ (τ, t)| < K is the real or complex-valued function that is uniformly 
limited in terms of both arguments (K < ∞).

Therefore, the autoregressive process specified by equation (2.41) can be called 
linear discrete-time random process. Kernel ϕ (τ, t) of linear random process (2.43) is 
related to autoregression parameters { ( ), 1, }

j
a t j p=  at the fixed value of t by the rela-

tionships presented in paper [25]. The kernel of linear random process (2.43) can be 
also determined by using the system of matrix equations (2.42):

 1( , ) ( ) .
p

t CA t Bτ−φ τ =  (2.44)

For the fixed value of t, A
p
0  = I, where I is the identity matrix, while 1

p p p
A A Aτ τ−= ∗  

[42].
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From expression (2.42) it follows that the following relationships should be ful-
filled for the autoregressive process with periodic coefficients:

 A
p
(t ) = A

p
(t + T ), ϕ (τ, t) = ϕ (τ, t + T ), T > 0. (2.45)

Hence it follows that the following equalities are fulfilled:

C A
p
(t )B = C A

p
(t + T )B, ϕ (τ, t) = ϕ (τ, t + T ), T > 0.

Thus, the Hilbert autoregressive process with cyclically time varying autoregres-
sion parameters having the same period T > 0 generated by a random process with 
independent values and completely divisible distribution law represents a linear ran-
dom process with discrete time and periodic kernel (in terms of t ).

The logarithm of characteristic function of the linear autoregressive process with 
periodic kernel has the following form:

 

2 2
1 2

0 0

2
0

ln  ( , ) ( , ) 0.5 ( , )

( , )
exp[ ( , )] 1 ( ),

1

f u t i u t u t

iu x t
i x u t dL x

x

∞ ∞

ξ ς ς
τ= τ=

∞∞

τ= −∞

= κ φ τ − κ φ τ +

φ τ + φ τ − − 
+ 

∑ ∑

∑ ∫
 

(2.46)

where κ
ϛ1

, κ
ϛ2

 are the first and second semiinvariants of the generating process ϛ
τ
; re-

spectively, L(x) is the Poisson spectrum of jumps in the Levi formula of the generating 
random process ϛ

τ
.

Let us consider a linear autoregressive process having the periodic structure of 
the generating process. Such process satisfies the following difference equation:

 1 1 ... , ,
t t t p t

a a t Z− −ξ + ξ + + = ς ∈  (2.47)

where { , 1, }
j

a j p=  are the autoregression parameters, p is the order of autoregression, 
ϛ

t
 is the generating process having the properties presented below.

Let us assume that η
t
 = ϛ

t
 – ϛ

t – 1
, t ∈ Z is the first difference of generating process 

ϛ
t
. Let us also assume the existence of such T > 0 that for all τ and t the following 

relationships are fulfilled:

 1 1 2 2( ) ( ), ( ) ( ), ( , ) ( , ),
x x

T T d L x d L x Tκ τ = κ τ + κ τ = κ τ + τ = τ +  (2.48)

where κ
1
(τ) and κ

2
(τ) are the first cumulant functions of process η

t
; L (x, τ) is the 

Poisson spectrum of jumps in the Levi formula for process ϛ
t
.

The logarithm of characteristic function of the linear random process with 
periodic generating process has the following form:

 

2 2

0 0

2
0

ln  ( , ) ( ) ( ) 0.5 ( ) ( )

( )
exp[ ( )] 1 ( , ),

1 x

f u t i u t u t D

i u x t
i x u t d L x

x

∞ ∞

ξ
τ= τ=

∞∞

τ= −∞

= φ − τ µ τ − φ − τ τ +

φ − τ + φ − τ − − τ 
+ 

∑ ∑

∑ ∫
 

(2.49)

where

 
3

2
1 22

( ) ( ) ( , ), ( ) ( ) ( , ).
1 x x

x
d L x D x d L x

x

∞ ∞

−∞ −∞
µ τ = κ τ − τ τ = κ τ − τ

+∫ ∫  
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It can be seen that the following conditions are fulfilled [29]:

 μ (τ) = μ (τ + T ),   D (τ) = D (τ + T ). 

Hence, the following identity is true:
 f

ξ
(u, t ) = f

ξ
(u, t + T ). (2.50)

Thus the linear autoregressive process with periodic generating process is a peri-
odic random process in strict sense.

The above considered models of random processes can be applied for the simula-
tion of information signals of expert systems, various cyclically changing radiophysi-
cal processes, periodic signals in biomedical investigations, etc.

The autoregressive processes with cyclically time-varying autoregression param-
eters having the same period and with periodic generating process can be also referred 
to periodic random processes in strict sense.

Let us consider such autoregressive processes in a greater detail.
Suppose we have the following autoregressive process

 1 1( 1) ... ( ) , ,
t t p t p t

a t a t p t Z− −ξ + − ξ + + − ξ = ς ∈  (2.51)

where a
1
(t ) ... a

p
(t ) are the autoregression parameters cyclically varying with time and 

having the same period T
1
 > 0, i. e.,

a
1
(t ) = a

1
(t + T )

⋮

a
p
(t ) = a

p
(t + T ),

where p > 0, p ∈ Z is the order of autoregression.
Let η

t
 = ϛ

t
 – ϛ

t – 1
, t ∈ Z be the first difference of generating process ϛ

t
. Such 

T
2
 > 0 that for all τ and t the following relationships are fulfilled:

  1 1 2 2 2 2 2( ) ( ), ( ) ( ), ( , ) ( , ),
x x

T T d L x d L x Tκ τ = κ τ + κ τ = κ τ + τ = τ +  (2.52)

where κ
1
(τ) and κ

2
(τ) are the first cumulant functions of process η

t
; L (x, τ) is the Pois-

son spectrum of jumps in the Levi formula for process ϛ
t
. Let us assume the existence 

of such real number а α ∈ (–∞, ∞) that T
2
 = α T

1
. Let us designate T

1
 = T, then 

T
2
 = α T. Therefore, the kernel of linear random autoregressive process (2.51) satisfies 

relationship ϕ (τ, t ) = ϕ (τ + αT, t + T ) at all values of τ, t. Parameter α represents the 
ratio α = tg φ of the period of the first difference of generating process η

t
, to the period 

of linear autoregressive ξ
t
.

Process parameter α is determined by relationship α = tg φ , where tg φ is the slope 
ratio of plane τ × t, along which kernel ϕ (τ, t ) is a periodic function [31]. Angle φ is 
called the angle of kernel periodicity of process ξ

t 
.

Applying the linear autoregressive processes with periodic structures as 
mathematical models of information signals having the cyclic character, it is possible 
to construct effective algorithms of analysis and classification of such signals using a 
priori information about these processes. As compared with other models, having 
periodic structure and presented, for example, in papers [25] that can be applied for 
stochastic Gaussian information signals, the linear autoregressive processes with 
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periodic structures make it possible to describe a wide class of stochastic nonstationary 
non-Gaussian information signals having completely divisible distributions and 
periodic structure. The use of such models can be effective in simulating the signals of 
passive radiolocation and hydrolocation systems, deep space communication, micro-
satellite control, and diagnostics making it possible to detect defects at early stages of 
their appearance.

2.5. INVERSE PROBLEM 
OF AR PROCESSES

Autoregression processes are widely practiced when constructing 
mathematical models of information signals of different types and during their analysis 
and synthesis. To classify such processes their energy characteristics are often used, 
but considering problems of classification of stochastic information signals in case 
of non-Gaussian distribution, the information, which energy spectra (within the 
framework of the first two moments) possess, is often not enough for reliable 
recognition and classification of such signals. Then it is expedient to use information 
on higher moments (integral characteristics) or statistical characteristics of such 
signals distributing.

Sometimes, applications require finding statistical characteristics of the gene-
rating process ϛ

t
 if autoregression parameters are known { ,  1, }

j
a j p= , where p is the 

autoregression order and statistical characteristics of the process observed ξ
t
. 

Occasionally, such a problem is referred to as an inverse problem. For autoregression 
processes such a problem was originally considered by Cox D.R., where statistical 
characteristics of the generating process ϛ

t
, were determined for die case of 

autoregression processes of the first order ξ
t
 + a ξ

t–1
 = ϛ

t
, t ∈ Z that further on will be 

designated as AR (1), while Z = {..., –1, 0, 1, ...} is the set of integers. It was assumed 
that it has exponential distribution. A similar problem for AR case (1) of the process 
that has gamma and binomial distribution was considered by Lawrance A.J. and 
McKenzie. The investigation dealing with determinations of statistical characteristics 
of generating processes, namely, moments generating function, consider only AR 
processes (l). In addition, generating function of the generating process ϛ

t
 moments 

was determined for the case of distributions that belong to infinitely devisable 
distributions class. This class also encompasses exponential (Laplace) distribution, 
gamma distribution, negative binomial distribution, and Gaussian distribution.

The present part offers, when finding statistical characteristics of generating 
process, to use the apparatus of characteristic functions. The paper also considers the 
problem of finding characteristic function of generating process, if the autoregression 
linear process is observed. The method, which is going to be used for solving this 
problem, could be considered as the development of generating process method 
proposed by A.N. Kolmogorov [14] and also developed in [15-17].

Let us consider some properties of autoregression linear processes in more 
detail. 
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Autoregression linear processes (2.23) could be set in the following way:

 
1

, ,
p

t j t j t

j

a t Z−
=

ξ + ξ = ς ∈∑  (2.53)

where { , 0, 1, }
j j

a a j p≠ =  are the autoregression parameters; p is the autoregression 
order; { , }

t
tζ ∈Ζ  is the stationary random process with discrete time and independent 

values that has the infinitely divisible distribution law 0{ 0} 1P ς = = . This process is 
often referred to as the generating process.

It is proposed that the process ξ
t is stationary in the narrow sense and ergodic 

theorems are fulfilled [21], i. e. it is assumed that

 
2

0 0

1
, ( , ) 0

m m

t

t n

M r t n
m = =

ξ < ∞ →∑∑  if m→∞  (2.54)

where ( , ) [( )( )]
t t n n

r t n = ξ − ξ ξ − ξM M M  is the correlation function of process ξ
t
.

It is also assumed that solutions of the characteristic equation 

1 1( ) ... ,p

p p
z a a z a z−Ψ = + + +

on the complex plane lie within the unit disk [49]. Then, difference equation (2.53) 
has the only stationary solution

0

( ) ,
t t

∞

−τ
τ=

ξ = φ τ ζ∑
where { ( ),  }Zφ τ τ∈  is some numerical sequence, which is referred to as a pulse-
transition function or kernel of the random process ξ

t
. It is assumed that the following 

relationship is fulfilled
2

0

( ) .
∞

τ=

φ τ < ∞∑
Consequently, the autoregression linear process ξ

t
 of order p could be considered 

as the process of sliding average infinite order. It was shown in 2.2.1 that a kernel φ (τ) 
is related to the parameters of autoregression { , 1, }

j
a j p=  with recurrent forms.

To find the characteristic function of generating process ϛ
t
 of the autoregression 

linear process we propose a method that uses properties of Poisson spectra of jumps 
of the characteristic functions of infinitely-devisable laws distribution [15]. This 
approach is a development of Bruno de Finetti and Kolmogorov method. The 
following prerequisites form the basis of this method.

The logarithm of one-dimensional characteristic function for linear stationary 
process of autoregression could be determined in Kolmogorov canonical form

 
2

( )
ln  ( , ) ln  ( ,1) { 1 } ,iux

dK x
f u t f u im u e i u x

x

∞
ξ

ξ ξ ξ
−∞

= = + − −∫  (2.55)

where parameter m
ξ
 and spectral function of jumps K

ξ
(x) unambiguously determine 

the characteristic function.
The logarithm of autoregression linear process characteristic function could be 

written down also in the following form [15]

    ( ) ( ) ( )

2

( )
ln  , ln  ,1 ( ) ( 1 ( )) ,i u x

dK x
f u t f u im u e i u x

x

∞∞ ∞
ζφ τ

ξ ξ ζ
τ=−∞ τ=−∞ −∞

= = φ τ + − − φ τ∑ ∑ ∫  (2.56)
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where parameters m
ϛ
, K

ζ
(x) determine characteristic function of the generating 

process ϛ
t
, while ϕ (τ) is the kernel of linear random process in relationships (2.55) and 

(2.56) K
ξ
(x), K

ζ
(x) are non-decreasing limited functions such that K

ϛ
(–∞) = 0.

Thus, if the characteristic function of autoregression stationary linear process ξ
t
 

is observed in canonical form (2.54) and kernel φ (τ) is known, then using relationship 
(2.55) and considering results presented in papers [15,19] one could determine the 
parameters m

ϛ
, K

ζ
(x), and construct the characteristic function of generating process 

ϛ
t
 in Kolmogorov canonical form.

Parameters m
ξ
, m

ϛ
 and K

ξ
(x), K

ζ
(x) are related by the relationships

0

( ),m m
∞

ξ ζ
τ=

= ϕ τ∑
or 

1

1 [ ( 1)] ,
p

m m a
∞

ξ ς
τ=

 
= + − φ τ − 

 
∑  if p = 1.

If p > 1

1 1

1

1 ( )       given    1, 1,

. 

1 ( )       given    = , 1, ... 

p

j

j

p

j

p j

m a j p

m

m a j p p

τ

ς
τ= =

ξ
∞

ς
τ= =

    
+ − φ τ − τ = −   

    
= 

    
+ − φ τ − τ +  

   

∑ ∑

∑ ∑

Poisson spectra of jumps K
ξ
(x) and K

ϛ
(y) are related [14] (assuming that processes 

ξ
t and ϛ

t
 are stationary) as

 ( ) ( , ) ( ),K x R x y dK y

∞

ξ φ ς
−∞

= ∫  (2.57)

where R
ϕ
(x, y) is the transformation kernel. It is assumed that the relationship 

2
( , , )

t

R x y t dx dy
∞

φ
=−∞

< ∞∑ ∫∫  is fulfilled and that inverse kernel R
ϕ

*(x, y) and inverse 
integral transformation exist 

 
( ) ( , ) ( ).K y R x y dK x

∞
∗

ς φ ξ
−∞

= ∫  (2.58) 

Relationships (2.57) and (2.58) are true, if Poisson spectra of jumps of the 
processes ξ

t and ϛ
t
 do not have jumps in zero (i. e., if the processes ξ

t and ϛ
t
 belong to 

the class of processes with infinitely divisible laws of distribution without Gaussian 
component. In other cases one should use the relationships

 

( ) (0) ( , ) ( ),K x K R x y dK y

∞

ξ ξ φ ς
−∞

− = ∫

 

( ) (0) ( , ) ( ),K x K R x y dK y

∞
∗

ς ς φ ξ
−∞

− = ∫  (2.59)

where K
ξ
(0) and K

ϛ
(0) are jumps in zero.

Having used the results presented in [15, 21], transformation kernel for the 
stationary linear processes of autoregression could be found as
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2( , ) ( ) [ ( )], , ( , ),R x y U x y x y
∞

φ
τ=−∞

= φ τ − φ τ ∈ −∞ ∞∑
 

(2.60)

where ϕ (τ) is the kernel of autoregression linear random process; U [.] is the Heavyside 
function. Transformation kernel properties R

ϕ
(x, y) are related with the properties 

ϕ (τ) and, thus, with the properties of autoregression parameters a
1
, ..., a

p
. Relationship 

(2.59) could be written down in the following form:

if p = 1,
2

1 1

( , ) 1 [ ( 1)] 1 ( 1) , (0) 1,
p p

R x y a U x y a
∞ ∞

φ
τ= τ=

    
= + φ τ − + + φ τ − φ =    
    
∑ ∑

if p > 1
2

1

1 1 1

2

1 1

( 1) ( 1)    for   1, 1,

( , )   

( 1) ( 1)   for   , 1, ...

p

j j

j j

p p

j j

p j j

a U x y a p

R x y

a U x y a p p

− τ τ

τ= = =

φ
∞

τ= = =

       φ τ − + φ τ − τ = −    
      

= 
      

φ τ − + φ τ − τ = +     
      

∑ ∑ ∑

∑ ∑ ∑

Thus, to find the algorithm of one-dimensional characteristic function of 
generating process ϛ

t
 of the linear stationary process of autoregression ξ

t if the logarithm 
of one-dimensional characteristic function f

ξ
(x, 1) and kernel ϕ (τ) are known, one 

may use the following method:
1) parameter m

ϛ
 of the logarithm of generating process characteristic function in 

Kolmogorov form for linear stationary process of autoregression is determined using 

the formula 
0

( )m m
∞

ζ ξ
τ=

 
= φ τ 

 
∑ ;

2) having used (2.60) we find the transformation kernel R
ϕ
(x, y);

3) having determined R
ϕ

*(x, y) from relationship (2.57) we find the Poisson 
spectrum of jumps in Kolmogorov form K

ϛ
( y) of generating process ϛ

t
 for the linear 

stationary process of autoregression ξ
t.

Thus, having determined parameters m
ϛ
 and K

ϛ
( y) one may construct characteristic 

function of the generating process ϛ
t
 in Kolmogorov canonical form.

The method considered provides a possibility to construct characteristic function 
of the generating processes for linear stationary processes of autoregression, when the 
characteristic function in Kolmogorov canonical form is known. The method is not 
confined to finding the generating processes for linear processes of autoregression of 
higher orders.

Consider an example of the inverse problem solution. 
Let the process ξ

t
 have a gamma-distribution characterizied by one-dimensional 

characteristic function 

 
 f

ξ
(u, t) = (1 – iuθ)–b, ∀t ∈ Z; θ > 0; b > 0 (2.61)

The process is assumed to be strictly stationary, and adheres to the ergodic 
properties (2.54).
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Consider the peculiar features of Poisson spectra of jumps determination for  the 
process of the second order autoregression, i. e., for the process ξ

t
 + a

1
 ξ

t – 1
 + a

2
 ξ

t – 2
 = 

= ϛ
t 
, having one-dimensional gamma-distribution (2.61). In this case Poisson 

spectrum of process jumps in Kolmogorov’s formula could be determined as

0

[ ( )exp( / )],  0
( ) exp( / ) ,

0,                                              < 0

x b x x x
K x b y y dy

x
ξ

θ θ− θ+ − θ ≥
= − θ = 


∫

whence ( ) exp( / ) , 0.dK x b x x dx xξ = − θ ≥
Consider the simplest (for our problem) case when autoregression parameters 

a
1
, a

2
 < 0. It is assumed that the relationships a

1
2  + 4a

2
  < 0, |a

1
 + a

2
| < 1, |a

1
 – a

2
| < 1,  

–1 < |a
2
| < 1, |a

1
| < 1 – a

2
 are satisfied. Then the function ϕ (τ) decreases but remains 

positive while the transform kernel R
ϕ
(x, y), in conformity with (2.60), could be 

defined as

2( ), 0 ( ) ,     
( , )          

0, ( ) ;  < 0, 0.  

y x
R x y

y x x y

∞

τ=−∞φ


φ τ ≤ φ τ <

= 
 φ τ > =

∑

Taking into account the convergence of 2( )
∞

τ=−∞

ϕ τ∑  the properties R
ϕ
(x, y), ϕ (τ), and 

the existence of transform inverse kernel R
ϕ

–1(x, y), we could write

1

2
1 ( ) , 0 ( ) ,      

( , )          

0, ( ) ;  < 0;  = 0.  

y x
R x y

y x x y

−∞

−
φ τ=−∞

 
φ τ ≤ φ τ < =  

 φ τ >

∑

Consequently, based on (2.59), the Poisson spectrum of jumps of the generative 
process ϛ

t
, could be defined as

1

2

0

( ) exp( / ) , 0,    
( )

0, 0,

y

b x x dx y
K y

y

+

−∞

τ=−∞ς


φ τ − θ >

= 


=

∑ ∫

whence 
1

2( ) { ( )exp( / )}, 0,    
( )

0, 0.

b y y y
K y

y

−∞

ς τ=−∞


φ τ θ− θ+ − θ >

= 
 =

∑

Then 

 

1

2( ) ( ) { exp( / )} , 0,dK y b y y dy y

−∞

ς
τ=−∞

= θ ϕ τ − θ >∑
 

(2.62)

and the logarithm of the generative process characteristic function
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1 1

2

0

ln ( ; ) ln ( ;1)

exp( / )
( ) ( ) {exp( ) 1 } ,

.

f u t t f u

y
i b t u b t iyu iuy dy

y

t Z

ς ς

− − ∞∞ ∞

τ=−∞ τ=−∞

= =

− θ 
= θ φ τ + θ φ τ − − 

 
=

∑ ∑ ∫  (2.63)

where θ > 0, b > 0, y > 0, |a
1
| < 1 – a

2
.

After integration we could write

 1 1

2

ln ( ; ) ln ( ;1)

( ) ( ) [ (1 ) ln (1 )].

f u t t f u

i b t u b t iu iu

ς ς

− −∞ ∞

τ=−∞ τ=−∞

= =

 
= θ φ τ + θ φ τ − θ − − θ 

 
∑ ∑

 (2.64)

As an example let us consider an autoregressive process of the second order with 
coefficients a

1
 = –0.7 and a

1
 = –0.2,

ξ
t
 – 0.7 ξ

t – 1
 + 0.2 ξ

t – 2
 = ϛ

t 
.

The process ξ
t
 has a gamma-distribution with parameters θ > 0, b > 0, whose one-

dimensional characteristic function could be represented by relationship (2.61).
In considered case the kernel of autoregression linear random process ϕ (τ)

 
is a de-

creasing positive function. The kernel simulation results are represented in Fig. 2.1.
The kernel of autoregression linear process (2.61) has parameters a

1
 = –0.7 and 

a
1
 = –0.2.

Having used mathematical simulation methods, we determined the parameter 
values of characteristic function (2.63)

1

0

( ) 0.1111
n

−

τ=

 
φ τ = 

 
∑  and 

1

2

0

( ) 0.29032
n

−

τ=

 
φ τ = 

 
∑

with the sampling volume n = 1000.

Fig. 2.1. The kernel of linear autoregression process AR(2) that has parameters a
1
 = –0.7 and 

a
1
 = –0.2
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Then the logarithm of characteristic function for the generative process ϛ
t
 of 

autoregressive process (2.64) could be written as 

0

ln ( ; ) ln ( ;1)

exp( / )
0.1111 0.29032 {exp( ) 1 }

{0.1111 0.29032[ (1 ) ln (1 )]}.

f u t t f u

y
i t bu b t iuy iuy dy

y

b t iu iu iu

ς ς

∞

= =

− θ
= θ + θ − − =

= θ + −θ − − θ

∫

The proposed method makes it possible to construct the characteristic function 
of generative processes for linear stationary processes of autoregression of the second 
order having gamma-distribution. The method is not limited only to autoregressive 
processes (2.61) and could be used for determination of generative processes for linear 
autoregressive processes of higher orders having infinitely divisible distributions. An 
example of the inverse problem solution for the AR(2) process that has negative 
binomial distribution was considered in [50].

2.6. STATISTICAL SPLINES APPLICATION

Monitoring of current operating conditions of power engineering 
equip ment with forecasting possible failures in such equipment is an issue of great 
importance. On the one hand, forecasting of possible equipment failures provides 
more reliable opera tion due to timely repair and replacement of the most worn parts. 
On the other hand, it helps to avoid significant financial expenses for complete 
replacement of equipment.

The most challenging way to solve this problem is implementation of special 
expert systems for monitoring of operating conditions and forecasting failures. Such 
systems on the basis of regular analysis of the actual equipment status allow prediction 
and avoiding of the failures appearance.

The usage of the methods of statistical diagnostics based on mathematical models 
of linear stochastic processes enables estimation of the actual state of the operating 
electrical equipment with high level of reliability.

Assuming the timely service, forecasting equipment failures using statistical 
spline- functions ensure a high level of its reliability and economical effectiveness in 
use.

The main idea is that some quantitative characteristics of physical processes 
running in different components of tested equipment change when failures or defects 
appear. This allows locating and identification of failures. Regular observation of 
gradual changes of such parameters values versus time may provide researcher with 
important information regarding the tendency of failure evolution and allow 
forecasting the possible time of the failure appearance.
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2.6.1. Forecasting the time of failure 
using statistical spline­functions

In the scope of this paper let’s consider only so-called degradation 
failures that are caused by the change of diagnostic object parameters due to materials 
aging, micro-defects accumulation etc. We will not consider stochastic failures, 
caused by unpredictable factors.

For the technical diagnostics of electrical equipment part, we need to choose 
some numerical diagnostic parameter (or a set of diagnostic parameters) and an 
appropriate criteria that provide a way to make a decision about technical status 
of given constructive part. These questions had been discussed in a number of scien-
tific works, for example, [33, 40]. Additionally, for the forecasting of the possible 
failure time of selected constructive part a statistics of diagnostic parameter values 
during some time range is necessary. We will call this time range as "observation 
interval".

Let’s assume that studied electrical equipment operates in unchanging conditions 
during the whole observation interval [a, b]. In other words, no repair work is 
performed on studied equipment constructive part and routine maintenance does not 
change these conditions significantly.

In such case we can assume that the diagnostic parameter y vary in time t according 
to some functional dependence y = f (t, A), where A is a determinate vector of unknown 
real parameters, that linearly appear in y = f (t, A).

As a result of the series of experiments, the sequence of values y
i
 , 1,i N=  of the 

function y is obtained. Every y
i
 corresponds to the value of the argument t

i
 ∈ [a, b],

1,i N= .
We can assume, that values y

i
 are distributed by Gaussian law with identical 

dispersions ( 2
i

y = σD , 1,i N= , where D is dispersion operator) and are uncorrelated. 
This comes from the fact that measurements of values y

i
 are obtained with the same 

measuring instrument with the same accuracy in the independent time moments.
Desired functional dependence could be represented in the following form:

 
0

( , ), 1, ,
r

i ik k i

k

y x a f t A i N
=

= = =∑M  (2.65) 

where M is distribution expectation operator; A = (a
0
, a

1
, ..., a

r
 ) are unknown 

parameters; X = (x
ik
 ), 1,i N= , 0,k r=  — so-called planning matrix that consists 

of defined elements functionally dependent on t
i
 (not excluding the non-linear 

dependence).
Assuming that Y = (y

i
 ), 1,i N=  and A are column matrixes, the equation (2.65) 

could be noted in the matrix form: MY = XA. Thus, the problem of dependence 
y = f (t, A) reconstruction is reduced to the determination of statistical estimations of 
unknown parameters A from the results of observations

 
y

i
 , 1,i N= . At that the 

elements of planning matrix could be arbitrary chosen. This allows the search of the 
optimal solution in some sense.
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Note that elements of planning matrix define the class of functions that could be 
reconstructed. Let’s discuss the solution of the problem in spline-functions class [33, 
40]. Statistical estimations of unknown parameters will be constructed by the method 
of least squares.

Spline is a function, composed from pieces of different functions according to 
the defined scheme. Polynomial spline is composed from segments of different 
polynomials in a way that the resulting function is smooth enough. For the interpolation 
of some function with polynomial splines, a grid is defined on [a, b] segment of t 
axis:
 0{ }r

r j j
t =∆ = , a = t

0
 < t

1
 < ... < t

r
 = b.  (2.66)

A function ,( ) ( , )
m m k r

S t S t= ∆  is called polynomial spline of power m and defect 
k (1 ≤ k ≤ m) with nodes (2.66) if

a) 1( ) [ , ], 0, 1,
m m j j

S t for t t t j r+∈ ∈ = −P

b) ( ) [ , ],m k

m
S t a b−∈C

where P
m
 — is a set of real polynomials with power not exceeding m; Ck [a, b] is a set 

of continuous on [a, b] functions that have continuous derivatives up to k-th order.
In such specification of a problem, for given r it is necessary to find such grid Δ

r
  

on the [a, b] segment that a spline defined on it would give the optimal in a sense of 
least squares statistical estimation of vector A, which elements are assumed as ordinates 
in spline nodes. According to the least squares method [33, 40], it is necessary to 
reach the minimum of expression

 

2

1

( )*( ) .
N r

i j ij

i j r

Y XA Y XA y a x
= =

 
− − = − 

 
∑ ∑  (2.67)

Vector A could be found from the equation

 
1( * ) * .A X X X Y−=  (2.68)

The confidence interval with probability level β for the estimations of A could be 
determined as

 

( ) 1{( ) } ,
1

j

j j j

d
I a X X

N r

−
β β

 
= γ ⋅ 

− − 
∓  (2.69)

where γ
β
 is a number found from the equation 

1{ } 1
N r

s − − β≤ γ = −βP  if random value 
S

N – r – 1
 is distributed by Student law with N – r – 1 degrees of freedom; d is a sum of 

squares of the deviations of observations y
i
 from the spline values in corresponding points.

Equation (2.69) allows the determination of confidence intervals in every spline 
node and the confidence channel on the whole segment.

In order to obtain the forecast, an additional node is added to the set of spline 
nodes, which abscissa corresponds to the time of forecast. Using computer and 
enumerative technique, a grid was found satisfying the equation (2.68) and, at the 
same time, minimizing (2.67) on the set of all possible non-uniform grids and width 
of confidence interval in the forecast node.
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As a result, the expected value and confidence interval of selected diagnostic 
parameter in the end-point of the forecast interval are found.

The frames of confidence channel are obtained by the linear interpolation of 
upper and lower limits of the confidence intervals in all nodes of the obtained spline, 
including forecasting node. An example of statistical spline is shown on Fig. 2.2.

Forecasting failure time of diagnostic constructive part is performed based on the 
selected diagnostic criterion. For example, the following rule could be used as a 
criterion: a node is considered to be defective when diagnostic parameter exceeds 
some predefined threshold.

For the above criterion, possible time t
f
 of the failure will be the intersection point 

of the obtained statistical spline with straight line, which ordinate is equal to predefined 
threshold (see Fig. 2.3).

Time interval, when the failure will happen with given confidence probability, is 
obtained in the intersection points of confidence channel with threshold line. On 
Fig. 2.2 left and right limits are denoted as t

f 1
 and  t

f 2
.

2.6.2. Forecasting laminated magnetic cores failures

To illustrate the method of electrical equipment failures time 
forecasting let’s consider the following example.

In the Institute of Electrodynamics of National Academy of Science of Ukraine, 
the diagnostic expert system was created for shock vibration testing of laminated 
magnetic cores [33].

The model of laminated magnetic core was also created. It consists of the package 
of electric steel plates used in LP transformers. The pressing of plates could be adjusted 
with special pins.

A series of experiments were performed with this expert system. During the experi-
ments, shock vibration wave was generated in the body of magnetic core. Vibration signals 
were measured by accelerometer. Then signals were amplified, converted to digital form by 
analog-to-digital converter and recorded to computer memory. Afterwards spectrograms 
of measured signals were obtained and the quantity of frequency peaks with amplitude 
exceeding the half of maximum value was counted. It was demonstrated that this diagnos-
tic parameter could be successfully used for laminated magnetic cores diagnostics.

Fig. 2.2. An example of statistical spline with 
6 nodes

Fig. 2.3. Expected failure time  t
f
 and corre-

sponding confidence interval limits t
f 1

, t
f 2
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The corresponding diagnostic rule was formulated. In order to increase diagnostics 
reliability, several vibration signals are measured at the same time. Each of them is pro-
cessed and the number of spectrogram frequency peaks is calculated. The average num-
ber of frequency peaks is used to make a decision about magnetic core technical status.

According to [33], a magnetic core is considered to be operable if the averaged 
quantity of frequency peaks does not exceed 6.255. Otherwise the plates’ pressing is 
considered to be insufficient, which means that there is a magnetic core failure.

To verify proposed method an experiment was performed. During this experiment 
the plates pressing on the magnetic core model was little by little decreased. After 
every decrease, the diagnostic parameter (averaged quantity of frequency peaks in the 
spectrogram) was measured. Totally 12 measurements were performed.

The statistical spline was obtained as a result of observations processing. It is 
shown on Fig. 2.4. Since the deterioration of magnetic core was made artificially, the 
real time is not shown. Instead of it, the ordinal numbers of measurements are shown. 
They could be considered as conventional time units. Forecast interval is 5 time units, 
confidence probability is p = 0.95.

It is clear from the Figure that continuing the experiments in the same conditions, 
pressing of magnetic core plates could reach low critical point at 13-th measurement. The 
probability that magnetic core will "fail" between 13-th and 16-th measurement is 0.95.

Usage of statistical splines for electrical equipment failures forecasting allows 
obtaining time limits, in which the failure of equipment will happen with a 
predetermined probability level. This could be used for more accurate planning of 
maintenance and repair works terms. As a result, this allows complete utilization of 
equipment technological lifespan and increasing of its reliability.

Fig. 2.4. Statistical spline representing the results of experiment with artificial deterioration of 
the laminated magnetic core model
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2.6.3. Biomedical applications

The Chernobyl accident resulted widespread contamination of 
environment. Many radionuclides were emitted to the environment from the reactor. 
Radionuclides entered human bodies mainly by inhalation, via drinking water and 
food-stuffs. Millions of people living around the Chernobyl zone including Kievities 
permanently accumulate radionuclides. 85Sr and 137Cs radioisotopes make the main 
contribution to the total radioactivity. These people need periodical decontaminating 
treatment to reduce negative consequences of internal irradiation.

The results of detailed investigations of radionuclide contamination in human 
bodies of inhabitants of Kiev after Chernobyl accident in 1986 have been discussed in 
the paper [40]. The investigations of ability of pectin — containing oral adsorbents to 
suppress 85 Sr and 137Cs accumulation in Wistar rats have been studied by Ukrainian 
scientists [40]. These adsorbents could be used for decontaminating treatment of 
population living around the Chernobyl zone. One of the basic problems of 
decontaminating treatment of population is prediction of probable total radioactivity 
doses that were received by human bodies. The results of preliminary statistical 
investigations are commonly used to predict probable radioactivity doses. The 
statistical spline function method is proposed for prediction of confidence region for 
total radioactivity doses.

Analysis of curves that were represented in paper [40] shown that the experimental 
data of 85Sr accumulation by rats met the above conditions. Therefore, the curves 
could be described by functional dependence (2.65) and the method of statistical 
spline functions could be applied for curve behaviour prediction.

The channels of confidence intervals that correspond to confidence level P = 0.9 
and At = 5 days array were constructed for the control group of rats and the group that 
received PVC adsorbent with application of experimental data and software MSAETS. 
The results are shown in Fig 2.1 and Fig 2.2. We are able to state that curves of 
radionuclide accumulation by the rats will be in these intervals in 90% of 
measurements.

The following fact could be a confirmation of the results obtained. We constructed 
confidence intervals for prediction of radionuclide accumulation by rats of both 
groups for the 33-rd investigated day with application of results of the 28 days obser-
vations. The activity of 85Sr accumulation by rats is within calculated confidence 
interval in both cases.

Calculation results of prediction confidence intervals of the activity of 85 Sr 
accumulation by rats of both groups for the 38-th day with application of results of 33 
days observation are shown in Fig 2.5 and Fig 2.6.

Represented results allow concluding that statistical spline method could be 
applied for prediction of radionuclides accumulation by living organisms.

The method is attractive for solution of some problems of biophysics, radiobiology, 
biochemistry.
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2.7. Estimation of random signals stationarity

Experimental authors’ studies have shown, however, that informa-
tion signals could not always be assumed to be a stationary process. If this is not taken 
into account and vibration non-stationarity will entail a reduction in vibration 
diagnostics effectiveness and in isolated cases the diagnostics system to lose working 
capability. Note that some properties of stationary random processes were conside -
red in [19].

Electric engine diagnostics could not always be automated. It is therefore 
necessary to introduce a preliminary diagnostics engine that is technically simpler to 
realize this could be referred to as malfunction detection. Here diagnostics-system 

Fig. 2.5. Accumulation of 85Sr by rats of control group

Fig. 2.6. Accumulation of 85Sr by rats of PVC group
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regime produces information about the presence or absence of a malfunction. 
Diagnosis of defects should only be carried out when the electric engine is not 
functioning properly.

Some results of the method were published in [19]. The problem also was 
considered in [35, 36]. 

The basic aim of the chapter is to develop methods for estimating the information 
signals stationarity on a basis of certain statistical criteria and development of method 
for detecting malfunctions of electric machines using proposed stationarity-evaluation 
techniques.

The approach is based on the following consideration. Carrying out vibration 
diag  nosis it is assumed that the appearance of a defect in an electric engine will lead 
to a change in vibration characteristics. If the vibration was a stationary random 
process prior to failure appearance, then in course of a time interval that includes the 
instant of failure appearance the vibration could no longer be assumed to be stationary 
in general case. Application of techniques for evaluating vibration stationarity makes 
it possible to detect the appearance of a failure; this is equivalent to detection of 
electric engine failure.

We introduce some definitions. The random process { }( ), ( , )t tξ ∈ −∞ ∞  is said to 
be stationary in a broad sense if the mathematical expectation M(ξ

t 
) = m is constant 

and independent of time t and correlation function R (t
1
 , t

2
) = R (t

1
 – t

2
) depends solely 

on the difference |t
1
 – t

2
|. If the finite-dimensional distributions of the process of ξ (t ) 

are independent of time origin, then ξ (t ) is said to be stationary in a strong sense.
A stationary process with discrete time ξ

t
 , t ∈ Z (where Z = {..., –1, 0, 1, ...} is a 

set of integers) with independent values ξ
tk
 and ξ

tl
, l ≠ k , is a discrete white noise. It is 

stationary in broad sense if its mathematical expectation and variance are constant. 
The process ξ

t
 is stationary in narrow sense if its one-dimensional distribution function  

F (x) is independent of time. To be rigorous we should assume the process ξ
t
 to be 

ergodic and non-periodically correlated.
Statistical analysis of the process ξ

kt
 is based on samples. If an experiment yields 

a series of numerical values x
i
 = ξ

ti
 , 1,i n=   of the process ξ

kt
, then the set x

1 
, x

2 
, ...,  x

n
 

is said to be a sample of size n for a realization of the process ξ
kt
 of the segment 1,k n=

. The samples of the process ξ
kt
 should be used to test the hypothesis H

s
 that the process 

is a stationary state process against the alternative, hypothesis H
n 
, that it is a non-

stationary state process.
As follows from the definition of a stationary state process in a strong sense, 

testing the hypothesis H
s
 consists of checking to see that N independent samples 

obtained at different times, each of size n, have been taken from the same random 
processes ξ

kt
 with distribution F (x). If F (x) is continuous, then H

s
 could be tested on 

the basis of Kolmogorov-Smirnov criterion. For this purpose we define the statistic

 

,
, max ( ) ( ) ,i j

n n in jn
x

D F x F x
−∞< <∞

= −  (2.70) 

where F
n
(x) and F

jn
(x), , 1, ,   i j N j i= ≠  are empirical distributions of i-th and j-th 
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samples respectively. If for the pair of samples

 
,
, 1 / 2i j

n n
D k n−α>  (2.71)

then accept H
s
 and otherwise accept H

n 
. The values of quantiles k

1 – α
 of Kolmogorov 

distribution are found from the tables given in [59]. Parameter α is the level of test 
significance. It is equal to the probability that a stationary process will be assumed to 
be a non-stationary on the basis of two samples, i. e. when N = 2. Evaluating the 
stationary state of information signals, we calculate the statistics (1) obtained from 
the pairs of samples of information signals. If calculated statistics satisfy the inequality 
(2.71), information signals are a stationary process with significance level less than α.

The procedure for estimating the stationary state of information signals becomes 
simpler if signal ξ

kt
 is normally distributed. In such a case, estimating its stationary 

state consists of testing the hypothesis H
s
 that variance and mathematical expectation 

are constant. It is convenient to implement such a test on the basis of criterion t
1 
, 

Cochran criterion t
2
 and two-sample criterion t

3 
. The variance is first tested for 

constancy, and only after the mathematical expectation is estimated.
Estimating the stationary state of normal information signals ξ

kt
 could be carried 

out in the following sequence: for each of N samples we calculate the estimates of 
mathematical expectation m

i
 and variance σ

i
2

 
, using the formulas

 

2 2

1 1

1 1
, ( ) , 1, ,

1

n n

i ki i ki i

k k

m x x m i N
n n= =

= σ = − =
−∑ ∑

 

(2.72)

where x
ki
 is the k-th reading of the i-th sample.

Constant Variance Tests. For sample size n
i
 ≠ n

j
 , n

i
 = n

j
 and number of samples 

N = 2 we use the following statistic (F-criterion)

 
t

i
 = σ

1

2 / σ
2

2 . (2.73)

For sample size, n
i
 = n

j
 = n and number of samples N > 2 we use the following 

statistic (Cochran criterion)

 

2 2

1

max .
N

i i i

i

t
=

 
= σ σ 

 
∑  (2.74)

Constant Mathematical Expectation Test. For sample size n
i
 ≠ n

j
 , n

i
 = n

j
 and 

number of samples N = 2 we use the following statistic (two-sample criterion, variance 
of compared samples assumed to be equal):

 

2 2 1/2 1/2
3 / ((( 1) ( 1) ) / ( 2)) ( / ( )) .

i j i i j j i j i j i j
t m m n n n n n n n n= − − σ + − σ + − × +  (2.75)

For the criteria chosen on the basis of calculated m
i
 and σ

i
2

 
, we use formulas 

(2.73)-(2.75) to calculate the values of statistics t
i 
, i = 1, 2, 3. On the basis of statistics 

t
i
 distribution the critical values C

i, N, n, α
 have been calculated and tabulated in [59] for 

these criteria. Critical values depend on the number of samples N and sample size n, 
as well as on the significance level α. The hypothesis H

s
 is accepted that the variance 

or mathematical expectation is constant, provided 

 t
i 
 < C

i, N, n, α 
, (2.76)

for corresponding criterion.
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If H
s
 is accepted for σ

i
2

 
 and for m

i
 we then make a decision that the normal random 

information signal being analyzed is a stationary random process.
To test the normality of information signals the criterion proposed in [59] could 

be applied. This consists of testing the hypothesis H that skewness and kurtosis 
coefficients fall within critical limits for the process being analyzed. To do this, on the 
basis of significance level and sample size, we use tables [59] to find critical limits for 
the estimates of skewness g

1
 and kurtosis b

2
 coefficients. If calculated g

1
 and b

2
 fall 

between the limits, we then accept hypothesis H. This means that the analyzed sample 
has been taken from a normal process, with an accuracy of up to the first four moments. 
The direct utilization of the samples obtained to estimate information signals 
stationarity by means of the proposed criteria involves errors, since in general case 
the readings obtained following quantification of information signals will be 
dependent. If we equate the amounts of information contained in samples obtained 
from the processes with dependent and independent readings, then the sample from 
the process with independent readings will be smaller in size. We refer to this size as 
the effective size n*.

We consider an example of the method of stationary state estimation on the basis 
of roller bearings vibration signals studies [1, 19]. It follows from the model proposed 
in [1, 18-20] for EM roller bearings vibration and experimental data that the value of 
vibration autocorrelation function is equal to zero for a certain time interval Δt 
between readings. Readings of stationary normal vibration signals taken at intervals Δt 
will be independent, i. e. information signals could be represented as a random process 

ξ
k Δt

. If Δt ≥ T
d
 = 1 / f

d
 a sample with independent readings will have the maximum 

possible effective size that could be estimated from the following formula:

 n* = mod [n / f
d 
 S

0 
], (2.77)

where mod[a/b] — integer part of division a/b; S
0
 ≤ Δt is the time interval between the 

absolute maximum and the moment at which the autocorrelation function first passes 
through zero; f

d
 is the sampling frequency. 

For the particular case in which Δt = S
0
 = T

d
 , we obtain n* = n .

An example of statistical procedure application. We consider the test application 
for studying roller bearings vibration signals. To simplify the procedure of estimating 
vibration stationarity from data corresponding to different test regimes, we selected 
samples for which the hypothesis H that they belong to a normal process has been 
accepted. We took respective significance levels of 2% for the criteria used to test to 
see whether skewness and kurtosis coefficients are equal to zero. The hypothesis H

  is 
accepted if the estimates of skewness coefficient g

1
 and kurtosis b

2
 coefficient for 

n* = 1000 satisfy the inequalities | g
1
| < 0.17, –0.3 < b

2
 < 0.39 and, correspondingly, if 

for n* = 800 we have | g
1
| < 0.202, –0.35 < b

2
 < 0.46. The critical limits of inequality 

were found from [59]. The number of samples selected and the corresponding test 
regimes are indicated in Table 2.1. 

We used (2.72) for computer calculation of the estimates of mathematical 
expectation m

i
 and variance σ

i
2

 
. On the basis of these estimates we used Cochran test 
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and two-sample test to calculate the values of statistics t
2
 and t

3
 for each of the test 

regimes. The results of the analysis are shown in Table 2.1. Here the largest of all the 
statistics t

3
 is calculated for all possible pairs of samples for given test regime. 

In the next stage, we determine the critical values C
i, N, n, α

. We have to select the 
value α. For a constant sample size, the smaller α, the lower the probability that a 
stationary process will be assumed to be a non-stationary process, but as α diminishes 
there is an increase in the probability of assuming a non-stationary process to be 
stationary. A significance level 0.01 ≤ α ≤ 0.15 is often selected. We selected a 
significance level α = 0.015. For the Cochran criteria, C

i, N, n, α
 values for α = 0.015 

were calculated for each of the test regimes on the basis of approximation formula 
proposed in [37]; they are shown in Table 2.1. 

Comparing the values given in Table 2.1 for statistics t
2 
, t

3
 and corresponding 

critical values shows that in accordance with the inequality (2.76), the hypothesis H
s 
, 

when variance and mathematical expectation are constant, is accepted with 
significance level of α = 0.015 for each vibration of properly functioning bearings and 
misaligned bearings when ESh-176 lubricant is used. The hypothesis H

s
 that the 

variance is constant, and for the given case the hypothesis that vibrations are stationary 
for a bearing with a defect on the inner race, ESh-176 lubricant being used, are 
rejected with significance level α ≥ 0.015. 

It follows from the table given in [37] for critical values C
i, N, n, α

 of two- sample 
criterion that for sample sizes n = ∞ and n = 500 these critical values differ by frac-
tions of a percent if 0.01 ≤ α ≤ 0.15. As an example, C

2, 2, ∞; 0.01
 / C

2, 2, 300; 0.01
 = 1,0039, 

C
2, 2, ∞; 0.1

 / C
2, 2, 300; 0.1

 = 1,0018. Thus Table 2.1 shows C
2, 2, ∞, α

 rather than C
2, 2, 1100, α

 for 
α = 0.01 and α = 0.15. Here both C

2, N, n*, α
 and C

2, 2, 1100, α
 are monotonically decreasing 

and N, n* — constant.
Comparison of the values given in Table 2.1 for statistics t

2
 , t

3
 and corresponding 

critical values shows that, according to the inequality (2.76), the hypotheses H
s
 , when 

variance and mathematical expectation are constant, is accepted with significance 
level of α ≤ 0.15 each for vibration of properly functioning bearing, misaligned 
bearings, and bearings with increased misalignment when ESh-176 lubricant being 
used. As a consequence, for each of these test regimes vibration could be asssumed to 
be a stationary process. The hypothesis H

s
 that the variance is constant, and for the 

case of hypothesis that vibration is stationary for misaligned bearing with de: on the 
inner race, ESh-176 lubricant being used are rejected with significance level α ≥ 0.01. 

Table 2.1. Calculated C
i, N, n, α

 values for α = 0.015

Bearing test regime N t
2

C
2, N, n*; 0.01

C
2, N, n*; 0.15

t
3

C
2, N, ∞; 0.01

C
2, N, ∞; 0.15

H

Functioning 8 0.1339 0.1402   0.13562 1.38 2.576 1.44 H
S

Misaligned 10 0.1074 0.1129 0.1091 1.40 2.576 1.44 H
S

Defect on inner 
race misaligned 

9 0.1278 0.1251 0.1251 1.54 2.576 1.44 H
N
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This means that if we choose a significance level 0.01 ≤ α ≤ 0.15, vibration-stationa rity 
hypotheses will be accepted in the first three regimes and rejected in the last two.

Detection of rolling bearing malfunctions. When a malfunction (certain types of 
defects) pears in an electric engine the vibration characteristics will change. This 
make it possible to suggest that over the course of the time interval that includes the 
instant of appearance of a malfunction the vibration will be a nonstationary process. 
Such an assumption could be verified practically by means of the methods developed 
for evaluation stationarity.

To illustrate this, let us look at the appearance of misalignment in a bearing using 
ESh-176 lubricant. Prior to its appearance, the vibration is a stationary process 
(Table 2.1). We now evaluate the vibration stationarity before and after misalign-
ment ppearance, analyzing 14 samples for this purpose (8 samples of vibration for 
the properly functioning bearing and 6 for the misaligned bearing). The statistic 
t

2
 = 0.0817 for these samples while the critical values of Cochran test are C

2, N, 4, 1100; 0.01
 = 

= 0.0808, C
2, 14, 1100; 0.15

 = 0.0783 (Table 2.2).
Comparing t

2
 with the critical values we could see that for a significance level 

α ≥ 0.01 the hypothesis H
s
 that the vibration is stationary will be rejected. The 

appearance of misalignment in a bearing therefore led to a significant change in 
vibration parameters as a result over the course of time interval including the instant 
appearance of the misalignment the vibration cannot be assumed to be a stationary 
random process. It must be emphasized that this result was obtained under condition 
that the vibration of properly functioning or misaligned bearing has been assumed to 
be a stationary process according to the data of Table 2.1.

Analogously calculations of statistics t
2
 and critical values were made other pairs 

of EM bearing test regimes. The results are shown in 2.2. For all pairs of regimes 
except for the "misaligned — misalignment increased" regime the hypothesis H

s
 that 

the variance is constant, and, therefore, that the vibration is stationary, is rejected 
with significance level α ≥ 0.01. For the "misaligned — misalignment increased" 
regime the hypothesis H

s
 that the variance is constant is accepted with significance 

Table 2.2. Calculated C
i. N. n. α

values for α = 0.015 and α ≥ 0.01

Pairs of bearing test regime 
(ESh-176 lubricant)

N t
2

C
2, N, n*; 0.01

C
2, N, n*; 0.15

t
3

C
2, N, ∞; 0.01

C
2, N, ∞; 0.15

H

Functioning-misaligned 14 0.0817 0.0808 0.07833 3.75 2.576 1.44 H
N

Misaligned-misaligned 
increased

16 0.0683 0.0755 0.0732 3.45 2.576 1.44 H
N

Functioning-misaligned 
increased

18 0.0632 0.0629 0.06118 2.00 2.576 1.44 H
N

Functioning -defect on 
inner ring misaligned

17 0.0709 0.06853 0.06478 1.38 2.576 1.44 H
N

Misaligned-defect on 
inner ring misaligned

15 0.0756 0.0755 0.0732 3.46 2.576 1.44 H
N
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level α ≤ 0.15. For this regime, however, the hypothesis H
s
 that mathematical 

expectation is constant is rejected with significance level α ≥ 0.01, so that vibration in 
"misaligned — misalignment increased" regime is also a nonstationary process. 

Utilization of the suggested techniques for evaluating stationarity according to 
the method indicated therefore makes it possible to detect a change in vibration 
characteristics caused by the appearance of a defect or misalignment of bearings. In 
other words it is possible to detect the malfunction of an electric engine.

It should be noted that the indicated method assumes stationarity of vibration in 
the initial regime. If this condition is not satisfied it is then necessary to carry out 
preliminary processing of vibration. In many cases such processing consists of 
eliminating the trend, and this could be done on the basis of techniques given in [19] 
as well as by bandpass filtering. Vibration stationarity could be evaluated follow- 
preliminary processes by means of the techniques described above.

If the vibration distribution is unknown it is necessary to use the Kolmogorov-
Smirnov test to evaluate stationarity and detect malfunctions.

The existing algorithm is based on measurement of electric engine vibration 
velocity and its comparison wіth the maximum permissible effective value of vibration 
velocity. It is assumed that if the mum is exceeded this means that a defect has 
appeared. In addition to its positive characteristics, the existing algorithm gives rough 
estimates. As an example, it neglects the initial level (following fabrication) of vibra-
tion that differs even for machines of same type from the same series. Cases could 
occur in practice where a defect that occurs will increase the vibration level without 
exceeding the maximum. The corresponding algorithm for the first stage of vibra -
tion diagnosis fails to detect such feet, in contrast to the proposed malfunction-
detection method.

A second drawback of the existing algorithm lies in the fact that to determine 
whether an EM is functioning properly we actually use a single vibration parameter, 
the variance. Even in the case of normal vibration, the value of mathematical 
expectation also carries information, however. If the vibration is not a normal random 
process then information about the technical status is carried by higher-order 
moments. The proposed malfunction-detection method makes it possible to use 
nearly all of the information available in a one-dimensional vibration distribution 
function. Moreover, it is based not on measurement of the effective value of vibration 
velocity and its comparison with the maximum value, but on comparison of statistical 
characteristics of the vibration (vibration velocity or vibration acceleration), obtained 
at different instants in time. As an example, for the particular case of normal vibration 
if the ratio of two estimates of the variance (power) of vibration, calculated on the 
basis of two samples obtained at different times, exceeds the critical value then the 
proposed method indicates that over the time between two samples there was a 
malfunction in the electric engine. 
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2.8. A PROCEDURE OF DECISION­MAKING 
RULE DEVELOPMENT

Information on the technical or control status, obtained on the 
basis of statistical estimates of the informative parameters, is represented in the form 
of a random vector with coordinates Ξ = a

1
, a

2 
.

Solution of the problem is reduced to accepting one of the following hypotheses: 
1. H

1
 — random vector Ξ has distribution density of probabilities P

1
; 

2. H
2
 — random vector Ξ has distribution density of probabilities P

2
.

Initially, we verified the hypotheses H
1
, H

2
 and then H

2
 and H

3
. Since the com-

ponents of diagnostic parameters vector have a normal (Gaussian) distribution with a 
probability of 0.95, the combined distribution densities of diagnostic parameters have 
the form [25, 62]

 11
exp{ [( ) ( )]},

2

T

m m m

m

P M
M

−= − Ξ −Θ Ξ−Θ
π

 (2.78)

where Θ
m
 — is the vector of mathematical expectations { }1 2,

m m m
Θ = θ θ ; M

m
 — is the 

covariance matrix of diagnostic (or control) parameters; | M
m 

| — is the determinant of 
the covariance matrix; Ξ — is the vector of diagnostic (control) parameters, m — is 
the number of hypotheses; l — is the number of diagnostic parameters. 

Determination of Θ
m
 M

m
 for hypothesis H

1
 and H

2
 is carried out using teaching 

sets corresponding to different technical (control) statuses of diagnosed (controlled) 
section by means of the following expressions

1

1
,

n

ml iml

i

a
n =

θ = ∑

 

1,1, 1,2,

2,1, 2,2,m

   
,

     

m m

m

m

M
γ γ

=
γ γ

 (2.79) 

2
1,1, 1, 1

1

1
( ) ,

1

n

m j

j

a
n =

γ = − θ
− ∑

2
2,2, 2, 2

1

1
( ) ,

1

n

m j

j

a
n =

γ = − θ
− ∑

2,1, 1, 1 2, 2
1

1
( )( ),

1

n

m j j

j

a a
n =

γ = − θ − θ
− ∑

1,2, 2,1, ,
m m

γ = γ

where n is the volume of teaching set; θ
ml

 are the mathematical expectations of 
diagnostic (control) parameters; γ

1, 1, m
,γ

2, 2, m
 are the variance of diagnostic parameters; 

γ
1, 2, m

 is the mixed central moment of diagnostic parameters. 
A similar procedure could be used to determine the elements of diagnostic spaces 

in different dimensions. The Neiman-Pearson procedure is based on the analysis of 
logarithm of the relationship of probability v and then is reduced to the optimum 
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selection of some threshold c that separates the set of permissible values of u into two 
non-intersecting subsets, i. e. on the set of permissible values of v, it is necessary to 
select threshold c for which it could be concluded, at the given value of error of the 
first kind α, the fixed volume of sample n and the lowest value of error of the second 
type β, that the hypothesis H

1
 holds if v ≥ c and H

2
 if v < c. 

The logarithm of probability ratio for the hypothesis H
1
, H

2
 is

 

1 1
2 1 1 1 2 2 2

1

( ) ( ) [( ) ( )]
ln    ,

2 2

T T

N

M X M X X M X
u

M

− −−Θ −Θ −Θ −Θ
= − +

 

(2.80)

where Θ
m
, M

m
 are respectively the vectors of mathematical expectations and the cova-

riant matrices of diagnostic (control) parameters for the hypothesis H
m
; X is the reali za-

tion of observation vector Ξ; (.)T — sign of conjugation; (.)–1 — sign of matrix inversion.
It is assumed that analyzed data of information signals is independent. If we carry 

out registration and analysis of N independent data from information (control) signals 
of sections, the logarithm of probability ratio of is v = u

1
 + u

2
 + ... + u

n
 . To determine 

threshold c and the required number of observations n, it is necessary to know the 
distribution of elementary probability u logarithm. This problem could be solved by 
several methods. We shall test some of them. 

The distribution of elementary probability ratio logarithm could be estimated 
using Monte Carlo method (i. e. by carrying out statistical simulations). However, this 
method has a significant disadvantage — for every test condition of diagnosed (control) 
section it is necessary to carry out a relatively complex process of statistical simulations 
of elementary probability ratio logarithm and estimation of its distribution and to 
know in advance several parameters of such models. 

There is another method for solving problems of this type. Using the transformation 
of elementary probability ratio logarithm parameters Θ

m
, M

m
 and also realizations of 

observation vector X u could be reduced to the distribution of a known type, for 
example, normal, χ2. Transformations could be both linear and non-linear. Usage of 
these transformations of probability ratio logarithm parameter does not require 
complex process of statistical simulation.

Initially, it is convenient to reduce covariance matrixes M
m
 to diagonal type. For 

this purpose, it is necessary to determine the corresponding matrixes B
m
 for which the 

following relationships are hold:

 
1

2

   0
, .

0      
mT

m m m m

m

B M B A A
λ 

× × = =  λ   
(2.81)

Consequently Y
m
 = B

m
 × X, Y

m
 = B

m
 × Θ

m
, where λ

1 m
,λ

2 m
 are the eigen numbers of the 

covariance matrix; B
m
 are matrixes of orthogonal transformations.

If we normalize the vector Y
m
, W

m
 the matrixes A

1
–1, A

2
–1 in the expression for 

elementary probability ratio logarithm are converted into unit matrixes. 
Now, carrying out the transformation described previously, we are coming to the 

case of recognition of images of two classes of two-dimensional random quantities 
having normal distributions, identical diagonal matrixes and different vectors of 
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mathematical expectations. Therefore, the elementary probability ratio logarithm has 
a normal distribution. According to the classic Neuman-Pearson procedure, specifying 
the probabilities of errors α and β, we could determine required number of observations 
N and threshold c using the expressions

 
2 2

2
1 2

( )
,

[ ( ) ( )]
n n

u u
N

M u M u

α β+ ×σ
=

−
 (2.82)

 
1 2

( )[ ( ) ( )]
,

2 2
n n

u uM u M u
c

N

α βσ × ++
= +

 
(2.83)

where u
α
 ,
 
u

β
 are the quantiles of normal distribution; M

1
 (u

n 
) is the value of mathema-

tical expectation of elementary probability ratio logarithm for the hypothesis H
1
; 

M
2
 (u

n 
) — is the value of mathematical expectation of elementary probability ratio for 

hypothesis H
2
.

Consequently, the decision-making rule has the following form:
§  if v ≥ c, then the hypothesis H

1
 is accepted with the probabilities of error of type 

I α and type II β; 
§  if v < c, then the hypothesis H

2
 is accepted with the probabilities α of errors of 

type I and β of errors of type II. 
Another linear transformation could be applied. If we use a preliminary centering 

of diagnostic control parameters and further we carry out orthogonal transformation 
of correlation matrixes of the parameters, then elementary probability ratio u has a 
non-centra χ2 distribution with the number of degrees of freedom equals to the number 
of diagnostic parameters (dimension of diagnostic or control space).

Example of Decision Making Rules Application. Operation reliability improvement 
of electric engines and mechanisms is associated unavoidably with well-timed 
diagnostics of their technical status. Vibrodiagnostics method is the most promising 
one in a group of methods for diagnostics of technical status of electric engines and 
mechanisms elements.

In statistical approach, the solution of vibrodiagnostics problem usually consists 
of the following stages: construction of a mathematical model of machines and 
mechanisms diagnosed elements vibrations; verification of correspondence between 
mathematical model and experimental data: separation of the most informative 
diagnostic features using experimental data; formation of teaching sets of specimen 
corresponding to different technical states of the diagnosed machines of mechanisms; 
construction of decision making rules.

Vibrodiagnostics method is selected at the stage of constructing the mathematical 
model. Usually, vibrations are modeled using mathematical model with continuous 
parameters. However, the majority of modern devices and IMS in vibrodiagnostics 
include microproc essors, microcomputers and personal computers which functional 
algorithms are based on digital methods of information signals processing.

Taking this into account, vibrations should be described using mathematical 
models with discrete time.
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In this work, we propose to use as mathematical models of machines and 
mechanisms elements vibrations one insufficiently studied group of random processes 
with discrete time — linear random autoregression processes. We present the properties 
of linear autoregression processes that could be used to solve other problems of 
engineering and could also be used in other areas of science.

AR models are used efficiently in problems of time series analysis, especially in 
problems of separating and classifying the information signals and also determining 
the response of a linear signal to a random effect.

There is a specific relationship between AR models and linear processes that 
makes it possible to separate a class of linear autoregression processes.

Considered in [1, 18, 19, 33], vibrodiagnostics methods contain the following 
three stages: "teaching", "experiment design", "diagnostics". We will examine in detail 
the special features of using the method of decision rules making to diagnose 309ES h

2
 

bearings in a stand while analyzing rolling bearings vibrations. In "teaching" regime 
after estimating the stationarity of 309ES h

2
 bearing vibrations data and carrying out auto-

regression analysis of vibration data [19], it is necessary to formulate teaching sets and 
estimate matrixes Θ

m
, M

m
 corresponding to different technical statuses of studied bearings.

Representation (2.23) is the most common repre sentation of autoregression 
processes and makes it possible to describe a wide spectrum of information signals, 
including vibrations signals of electric engines elements.

We will analyse this assertion. The majority of studies concerned examination of 
properties and applications of autoregression models for describing the physical 
processes assume that generating process is a Gaussian process. However, the 
experimental investigations show that vibrations of EM elements could not always be 
regarded as Gaussian random processes [38, 39].

The use of linear autoregression models makes it possible to solve the problems 
of vibration signals classification within the framework of characteristic functions and 
corresponding distribution functions.

Experimental results show that parameters and autoregression order could be 
used as possible diagnostic features for technical status of machines and mechanisms 
elements. Currently available methods of evaluating the autoregression parameters 
could be divided into the following groups: the methods based on maximum probability 
estimates, the least squares method, and robust methods [19]. It should be mentioned 
that in case of Gaussian generating process ς

t
, the estimates of maximum probability 

and the estimates of least squares differ only slightly, especially for the case of a large 
sample volume n from the realization of vibration process (n > 100).

The Yule-Walker method is one of the possible methods for evaluating the 
autoregression parameters. The estimates of autogregression parameters in this case 
are obtained by solving a system of the following equations:

 
0

0, 1, 2, ... ,
p

j s j

j

a r s−
=

= =∑
 

(2.84)

where r
s
 are the readings of correlation function of the process ξ 

t 
; a

1
, ..., a

p
, are the 

autoregression parameters; p is the autoregression order.

Babak_КНИГА_N.indd   65 21.03.2018   14:42:11



66

CHAPTER 2. Methods and models for information data analysis

If the length n of the process realization is relatively large, the true values of 
readings of correlation function r

(s)
 that are usually unknown could be replaced by the 

estimates.
If the vibration of a diagnosed element could be regarded as a stationary random 

process, the effective solution of equations system (2.84) is obtained using Levinson-
Darbin algorithm [19].

Another important problem of vibrations autoregression analysis is the estimate 
of autoregression order. Autoregression order could be estimated using various criteria, 
mainly AIC, FPE, BIC criteria proposed by Akaike, CAT criteria proposed by Parzen 
and HQ criteria introduced by Hannan and Quinn [19]. As indicated by the results of 
studies of autoregression order statistical estimates using various criteria, the criteria 
most suitable for problems of vibra tions autoregression analysis is the Hannan-Quinn 
criteria that takes a strictly independent estimate of autoregression order. The criteria 
is based on selecting the value of autoregression order model that minimizes the 
expression

 
2( ) ln 2 ln (ln ( )),
a

HQ p pc n= σ +
 

(2.85)

where 2

1

1
( ),

p

p kk
a r k

n =
σ = ∑  c > 2, a

1
, ..., a

p
 are autoregression parameters; r (k) are 

the counts of autocorrelation function of the process ξ
t 
; p is the autoregression order; 

n is the volume of sample from vibration process realization.
The methods of estimating the autoregression parameters described previously 

were used as a basis for algorithms of autoregression prototype functioning of IMS for 
vibrodiagnostics developed at the Institute of Electrodynamics of the National 
Academy of Sciences of Ukraine. The prototype includes accelerometers, the unit for 
preliminary processing and filtration of vibrations, an analogue-digital convertor and 
a computing unit based on microcomputer. The IMS prototype for vibrodiagnostics 
was used in studying the statistical characteristics of vibrations of 309ESh2 rolling 
bearings positioned in a stand for examining vibrations of rolling bearings developed 
at the Institute of Electrodynamics. The vibrations of both repaired bearings and of 
bearings having a defect of "misalignment" type were studied.

At the initial stage, stationary samples were selected from realizations of vibrations 
for different technical stages of rolling bearings. The results of autoregression analysis 
of more than 100 selected and classified as stationary realization vibrations, N — 2500 
(N is the volume of the sample) in the frequency band 2-4 kHz, quantization frequency 
16 kHz, were used to formulate the teaching sets for autoregression coefficients 
a

1
, ..., a

p
 corresponding to different technical states of rolling bearings. Studies of 

autoregression coefficients statistical characteristics make it possible to conclude that 
with the significance level of P — 0.05 the coefficients a

1
, a

2
 for these states of bearings: 

"in good working order", "misaligned", "greater misalignment", have a Gaussian 
distribution. Study of empirical histograms of distribution of autoregression 
coefficients a

3
 of working bearings show that these histograms are smoothed out by 

the first type of distribution in accordance with the system of Pearson curves [19].

ˆ
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The two-dimensional empirical histograms of distributions of autoregression 
coefficients a

1
, a

2
 are shown in Fig. 2.7.

The procedures described previously were applied in the "teaching" regime.
The statistical estimates of autoregression parameters, obtained as a result of 

autoregression analysis of vibrations realization, represent the initial data for 
constructing the decision making rules.

We shall examine the construction of decision making rules using the Neuman-
Pearson criterion on an example of diagnostics of misalignment and the degree of 
misalignment of 309ESh

2
 bearing positioned in a stand for examining the vibrations 

of rolling bearings.

Fig. 2.7. Two-dimensional empirical histogram (bearing suitable for service)

Fig. 2.8. Two-dimensional empirical histogram (misaligned bearing)
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Information on the technical status of diagnosed section, obtained on the basis 
of statistical estimates of diagnostic features is represented in the form of a random 
vector with coordinates Ξ = a

1
, a

2
 .

The solution of this task is reduced to accepting one of the hypotheses: H
1
 — 

random vector Ξ has the distribution density of probabilities P
1
 (bearings in good 

working order); H
2
 — the random vector Ξ has the density of distribution of proba-

bilities P
2
 (misaligned bearing); we verified the hypotheses H

1
, H

2
 .

Using the relationships (2.79), we obtain matrixes corresponding to bearings 
suitable for service:

3 3

1 1 3 3

1.0288    1.0162 10      0.5207 10
, ,

  1.244 0.5207 10         4.6817 10
M

− −

− −

− × − ×
Θ = =

− × ×

and for misaligned bearings

3 3

2 2 3 3

1.1087    1.4517 10      0.2549 10
, .

   1.399 0.2549 10          1.8445 10
M

− −

− −

− × − ×
Θ = =

− × ×

It is now necessary to find matrixes of orthogonal transformations. For the example 
given, these matrices are

 0.990437  0.137964  0.897313  0.441395
, .

 0.137964    0.990437  0.441395      0.897313

− −
= =

1 2
B B

Expanding the matrix relationship Y
m
 = B

m
 × X, we obtain the following equations 

for transition to statistics 1 4...y yɶ ɶ :

1 1 2 2 1 20.990437 0.137964 , 0.137964 0.990437 ,y a a y a a= − = +ɶ ɶ ɶ ɶɶ ɶ

 3 1 2 4 1 20.897313 0.441395 , 0.441395 0.897313 .y a a y a a= − = +ɶ ɶ ɶ ɶɶ ɶ   

The transition to normalized statistics is carried out as follows:

3
11 11

( )
3

12 12

/ 1.19055 / 0.949 10 38.642
,

15.811/ 1.0902 / 4.754 10

−

−

µ λ − ∗ − 
= = =  

 µ λ ∗
1 n

W

 

3
21 21

2( )
3

22 22

/ 1.6124 / 1.326 10 44.27
,

17.256/ 0.7629 / 1.970 10

−

−

µ λ − ∗ − 
= = =  

 µ λ ∗
n

W

 
(2.87)

 ( ) ( )

33
1 11 31

3 3
2 12 2 4

/ / 1.326 10/ 0.949 10
, .

/ / 4.754 10 / 1.970 10

y yy

y y y

−−

− −

λ ××
= = =

λ × ×
1 n 2 n

Y Y
ɶ ɶɶ

ɶ ɶ ɶ

To verify the hypotheses H
1
, H

2 
, the expression for probability elementary ratio has 

the form:

(2.86) 
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(1,2)

1 2 3 4

1
( )

2

1254.531 229.32 1215.988 388.426 257.648 .

n
u

y y y y

 ′ ′ ′ ′= − × − + × − × =  
= × − × − × + × −

1(n) 1(n) 2(n) 2(n) 2(n) 2(n) 1(n) 1(n)
W Y W Y W W W W

ɶ ɶ ɶ ɶ
 (2.88)

In the "experiment design" state, it is necessary to estimate the mathematical 
expectations and variance of elementary probability ratio logarithms for the hypotheses 
H

1 
, H

2
. It is also necessary to determine the required number of observations n and 

the threshold c for given values of probabilities of errors of types I and II. For this 
example, the mathematical expectations of elementary probability ratio and also its 
variance for verification hypotheses H

1 
, H

2
 
 
are respectively: M

1
(u

1, 2
) = –163.302, 

M
2
(u

1, 2
) = –202.567, σ = 151.756. Taking into account the relationships (2.82), (2.83) 

and specifying probabilities of errors α = 0.05, β = 0.01, we can determine the required 
number of observations n and threshold c:

2 2 2

2 2
1 2

( ) (1.645 2.326) 151.756
1.6 2,

[ ( ) ( )] ( 163.302 202.567)
n n

u u
N

M u M u

α β+ ×σ + ×
= = = ≈

− − +

2

1 2
( )[ ( ) ( )] 163.302 202.567

2 22

151.756(2.326 1.645)
180.935 .

2

n n
u uM u M u

–
N

N

α βσ × ++ − +
= + = +

−
+ = −

Consequently, the hypothesis H
1
(bearing is in good working order) is accepted if 

 
v

(1, 2) n
 ≥ c

1, 2 
,
 

(2.89)

where v
 (1, 2) n

 = (u
(1, 2) I

 + u
(1, 2) II 

)/2.

If the condition (2.89) is not fulfilled, we accept the hypothesis H
2
 (bearing is 

misaligned). 
In the "diagnostics" regime, technical status of examined bearing is tested as 

follows. According to the result obtained at the "experiment design" stage, to deter-
mine the misalignment of the 309ESh

2
 bearing with errors α = 0.05, β = 0.01 placed 

on a stand for examining vibrations, it is necessary to record two independent data 
points of the vibrations and carry out their autoregression analysis.

Let us assume that on the basis of vibrations autoregression analysis results we 
have obtained the following estimates of the autoregression coefficients: 

 ã
11

 = –1.0733, ã
12

 = –1.351,

 ã
21

 = –1.0275, ã
22

 = –1.3508.

The first index of autoregression coefficient denotes the number of data points of 
the vibration; the second is the order number of autoregression coefficient. Using 
equations (2.86), we determine the values of the statistics 1 4...y yɶ ɶ .
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11 12 13 14

21 22 23 24

1.24943, 1.19, 1.5594, 0.73852 ,

1.204, 1.1961, 1.51823, 0.75856 .

y y y y

y y y y

= − = = − =

= − = = − =

ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ

Substituting the resulting values of 1 4...y yɶ ɶ  into the expressions of elementary 
probability ratio (2.87) we obtain

 u
(1, 2) I

 = –85.093, u
(1, 2) II 

= –90.562 ,

v
 (1, 2) n

 = (u
(1, 2) I

 + u
(1, 2) II 

)/2 = –87.828 .

Since v
(1, 2)

 ≥ c
1, 2

 we accept the hypothesis H
1
 — the bearing is suitable for 

service.
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CHAPTER  3
SIMULATION AND SOFTWARE 
FOR DIAGNOSTIC SYSTEMS

COMPUTER SIMULATION 
OF NOISE AND RHYTHM SIGNALS

Obtaining real information signals as a result of natural experiment 
is usually costly or even impossible [41-44]. In this regard, it is 
advisable to use computer simulation to solve problems of analyzing 
such signals. Let us consider methods and algorithms for simulation 
of noise and rhythm signals.

Simulation of noise signals. To simulate noise signals, we use 
their design models [45]. Diagnostic models. The basic model of 
noise signals are the processes of Bunimovich-Rice [45]:

 
( )

1

( ) ( ).
t

k k

k

t h t t
ν

=

ξ = η −∑  (3.1)

Status change of the diagnostic object leads to a change in 
process parameters (3.1), in particular, amplitudes distribution law 
η 

k 
, pulses shape h (t ), and pulses appearance intensity λ. Therefore, 

diagnostic features are the change in probabilistic characteristics of 
noise signals.

Let us specify model parameters (3.1) and consider some 
typical shapes of elementary pulses (Table 3.1).

Since pulses amplitudes are positive, we give an exponential 
probability density of quantities η 

k 
:

p
η
(y) = β exp (–βy) E (y), β > 0.

In Table 3.2 the cumulant coefficients /2
2 , 3,6,s

s s
s−γ = κ κ =  

calculated in [42-44], of typical models of the process (4.1) for the 
values λτ

0
 = 1 and λτ

0
 = 5.

According to the Table 3.2 we can conclude that process distri-
bution (3.1), even for a sufficiently large value λτ

0
 = 5, differs signi-

ficantly from the Gaussian distribution, for which γ
s
 = 0, s ≥ 3.

The simulation algorithm consists of the following stages [42-44]:
1. Determine sampling rate T

d
 of simulated signal by signal cor-

relation interval (T
d
 << τ

corr 
) or upper signal frequency (T

d
 = 1 / f

d
 , 

f
d
 >> f

в
 ).

3.1.
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2. Set the required duration of simulated realizations and form an array of 
discrete time points t for which signal samples will be modeled. The time interval 
between neighboring elements of the array is T

d 
.

3. Obtain an array of random moments t
k
 of elementary pulses appearance based 

on a given intensity λ of the Poisson events stream where the intervals between 
neighboring moments t

k
 are distributed according to the exponential law.

4. Form an array of random amplitudes η 
k
 of pulses with the desired distribu -

tion law.
5. Form k-th elementary pulse. For this, a function is simulated h (t ), offset by 

a value t
k
 and multiplied by amplitude value η 

k
.

6. Simulate process realization (3.1) by summing obtained elementary pulses for 
all values   from the time array.

Simulation results. Let us simulate noise signals realization on the computer for 
specific values   of diagnostic models parameters.

Set the parameter values: A = 1, β = 1, τ
0
 = 5 µs. Choose the exponential-sinus 

pulses basic frequency f
0
 = ω

0
 / 2π = 5 MHz. The study will be done for the intensity 

of λ = 5 ∙ 106 s–1 that corresponds to λτ
0
 = 5. We choose sampling rate T

d 
 = 10 ns 

(sampling frequency is 100 MHz) that is shorter than duration τ
0
 of elementary pulse 

Table 3.1. The shape of elementary pulses

Number Pulse shape Analytical expression h (t ), A > 0, τ
0
 > 0

1 Rectangular h (t ) = AE (t ) E (τ
0
 – t )

2 Saw-shaped h (t ) = A (t/τ
0
) E (t ) E (τ

0
 – t )

3 Exponential-power h (t ) = A (t/τ
0
)b exp (–t/τ

0
) E (t )

4 Exponential-sine h (t ) = A exp (–t/τ
0
) sin (ω

0
 t) E (t )

Table 3.2. Cumulant coefficients of typical models

Pulses shapes Parameter, λτ
0

Cumulative coefficients

γ
3

γ
4

γ
5

γ
6

1 1 2.121 6 21.213 90
5 0.949 1.2 1.897 3.6

2 1 2.756 10.8 55.114 347.14

5 1.232 2.16 4.93 13.886

3, b = 0 1 2 6 24 120

5 0.894 1.2 2.147 4.8

3, b = 1 1 1.257 2.25 5.213 14.815

5 0.562 0.45 0.466 0.593

4 1 0.357 8.978 11.234 297.132

5 0.16 1.796 1.005 11.885
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by 100 times. Let us set realizations duration equal to T = 0.5 ms. Then the sample 
size for each realization is N = 5 ∙ 104 samples. To ensure simulated process stationarity, 
time origin will be transferred to the point t

0
 = 20 τ

0 
.

Fig. 3.1 shows simulated realization of the process (4.1) with the shape of impulses 
3 (b = 0) and 4.

To test the simulation algorithm effectiveness, we compare the values of theoretical 
and experimental initial moments. Theoretical moments α

s
 of the process (3.1) are 

found using formulas for the connection of initial moments with cumulants κ
s 
:

2 3
1 1 2 2 1 3 3 1 2 1; ; 3 ;α = κ α = κ + κ α = κ + κ κ + κ

2 2 4
4 4 1 3 2 2 1 14 3 6 .α = κ + κ κ + κ + κ κ + κ

Table 3.3 shows theoretical values, obtained in [45], of the initial moments of 
studied models and their estimates α̂  

s cp
 obtained by averaging over 30 realizations.

Table 3.3. Values of theoretical and experimental moments

Moments
Pulse shape 

1 2 3, b = 0 3, b = 1 4

α
1

5 2.5 5 5 0.159
α̂  

1 cp
5.038 2.548 5.027 4.987 0.157

α
2

35 9.58 30 27.5 2.525
α̂  

2 cp
35.28 9.87 30.19 27.34 2.505

α
3

305 48.13 210 164.7 1.827
α̂  

3 cp
305.7 49.89 210.7 162.9 1.729

α
4

3145 296.4 1680 1066 30.73
α̂  

4 cp
3118.3 308.2 1672.2 1044 30.45

Fig. 3.1. Bunimovich-Rice process realization: a — with exponential pulse shape 3; b — with 
exponentially-sinus pulse shape 4
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According to Table 3.3, we could conclude that theoretical and experimental 
values of the process moments are well coordinated, since the relative error for this 
realizations ensemble did not exceed 5,4 % (in the case of moment α

3
 for pulse 

shape 4). Fig. 3.2 shows the histograms and graphs of theoretical probability densities 
of the process (4.1) with pulse shapes 3 (b = 0) and 4, constructed using theoretical 
initial moments, rather than their estimates.

Charts in Fig. 3.2 show the consistency between theoretical density of probabilities 
and histograms.

Simulation of rhythmic signals. It is known that generalized models of rhythmic 
signals are stationary random processes with discrete spectrum and periodically 
correlated random processes [45].

Valid stationary random processes with discrete spectrum could be represented 
as follows:
 2( ) ,ki f t

k

k

t e
∞

π

=−∞

ξ = γ∑  (3.2)

where γ
k
 — independent equally distributed complex random variables, in which 

2[ ] 0, [ ] ,
k k k
γ = γ = σM D  where γ

k
 and γ

–k
 form complex conjugate pairs, and fre-

quencies f
k
 = f

–k 
,  f

0
 = 0.

Correlation function of the process (4.2) is almost a periodic function and is 

equal to 2 2
0

1

( ) 2 cos 2 .
k k

k

R f
∞

=

τ = σ + σ π τ∑
Let us note individual cases of the model (3.2).
1. If frequencies  f

k
 
 
are multiple, then f

k
 = –k

 
f

1
 , correlation function is a periodic 

function with a period T
0 
 > 0, R (τ) = R (τ + T

0
 ) and

0

122

0 0

1
( ) .

T

i kf

k
R e d

T

− π τσ = τ τ∫

Fig. 3.2. Theoretical probability density and process histogram (4.1): a — with exponential pulses 
shape 3; b — with exponentially-sinus pulses shape 4
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2. Let γ
k
 — degenerate random variables equal to C

k
. Then the model of rhythmic 

signals is deterministic almost periodic functions

 2( ) .ki f t

k

k

t C e
∞

π

=−∞

ξ = ∑  (3.3)

3. If in the formula (3.3) frequencies f
k
 are multiple, that is f

k
 = k f

1
, a C

k
 are 

Fourier coefficients, then the process ξ (t ) is a deterministic periodic function with a 
period T

0 
 = 1 / f

1
.

So, for simulation we will use formula (4.2), which we rewrite in actual form

 0
1

( ) cos (2 ).
k k k

k

t f t
∞

=

ξ = γ + γ π −ϕ∑  (3.4)

In simulation, number of terms in the formula (3.4) is finite.
Simulation algorithm contains the following steps:
1. Set the number of harmonics n.
2. Set the amplitude of harmonics γ

k
.

3. Set the initial phases φ
k
.

4. Set the realization duration T.
5. Determine the sampling rate based on the frequency of higher harmonics f

n
: 

T
d
 = 1 / f

d
 , f

d
 >> f

n
.

6. Simulate realization process, summing up all the harmonics.
Simulation results. We simulate two processes with discrete spectrum (n = 10); 

with multiple frequencies: f
1
 = 50 Hz, f

k
 = k f

1
, 1,10k = ; and with non-multiple 

frequencies:  f
1
 = 50 Hz, f

2
 = 75 Hz,  f

3
 = 130 Hz,  f

4
 = 175 Hz,  f

5
 = 225 Hz,  f

6
 = 

= 275 Hz,  f
7
 = 310 Hz,  f

8
 = 360 Hz,  f

9
 = 410 Hz,  f

10
 = 470 Hz. We assign to both 

processes the following simulation parameters: γ
0
 = 0, γ

1
 = 1, γ

2
 = 0.9, γ

3
 = 0.8, γ

4
 = 

= 0.7, γ
5
 = 0.6, γ

6
 = 0.5, γ

7
 = 0.4, γ

8
 = 0.3, γ

9
 = 0.2, γ

10
 = 0.1; random variable φ

k
 

Fig. 3.3. Realization of processes with discrete spectrum: a — multiple frequencies; b — non-mul-
tiple frequencies
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is evenly distributed over an interval [0; 2π]. We set implementation time to 10 s, and 
sampling rate is 20 kHz.

Fig. 3.3 shows realization of simulated processes with discrete spectrum for 
the case of multiple and non-multiple frequencies; Fig. 3.4 — estimates of their 
correla tion functions, Fig. 3.5 — estimates of spectral densities. Data window size in 
spectral analysis was 16.384 readings that determines resolution ratio at frequency 
of 20.000 / 16.384 = 1.22 Hz. It is seen from figures that in the case of multiple 
frequencies, the process and its correlation function are periodic functions, which is 
not the case with non-miltiple frequencies; in both cases, spectral densities have 
discrete components at frequencies f

k
.

Periodically correlated random processes with a period T
0 
 > 0 are non-stationary 

Fig. 3.5. Estimates of spectral densities of processes with discrete spectrum: a — multiple frequen-
cies; b — non-multiple frequencies

Fig. 3.4. Estimates of correlation functions of processes with discrete spectrum: a — multiple 
frequencies; b — non-multiple frequencies
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processes and satisfy the following conditions:

1) m (t + T ) = m (t );      2) R (t
1
 + T 

0
, t

2
 + T 

0
) = R (t

1
, t

2
 ).

According to [42-46] periodically correlated random processes can be obtained 
by periodic repetition of stationary process segment T 

0
.

We use for the simulation a Gaussian stationary process with independent values   
with parameters m = 0 and σ = 1.

We set the following simulation parameters: relization time — 100 s, sampling 
rate — 20 kHz (sample size N = 2 ∙ 106 counts). Data window size for spectral analysis 
is 8192, which determines the resolution at a frequency of 20000 / 8192 = 2.44 Hz. 
We isolate the realization from initial process segment with length T

0
 = 0.02 (400 

counts) and repeat it 4999 times. The resulting relization has duration of 100 s (sample 
size N = 2 ∙ 106 counts). Note that selected repetition period corresponds to a frequency 
of 50 Hz that is rotary equipment operation characteristic.

Fig. 3.7. Processes correlation functions estimates: a — stationary; b — periodically correlated

Fig. 3.6. Realizations of simulated processes: a — stationary; b — periodically correlated
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Fig. 3.6 shows relizations of simulated processes — stationary and periodically 
correlated, Fig. 3.7 — their correlation functions estimates, Fig. 3.8 — spectral 
densities estimates.

From Fig. 3.6-3.8 implies that realizations of both signals are similar, but the 
correlation function of periodically correlated process is periodic with an interval of 
0,02 s, and its spectral density instead of fluctuations around the average value of 
5 · 10-5 V 2·s has discrete components at frequencies, multiple 50 Hz.

3.2. DIAGNOSTIC SYSTEMS SOFTWARE 

Applied software is one of the main components of diagnostic 
systems; it implements the function of interaction with hardware system modules, 
managing information flows within the system, implementing algorithms for digital 
and statistical processing of information signals, building information fields images, 
forming the user interface, storing the information received and outcomes, etc.

The general structure of diagnostic systems software is presented in Fig. 3.9.
As a development platform, National Instrument’ Lab View environment was 

used. This product is a powerful tool for creating its own software, focused on solving 
both research and application problems, and has a comprehensive library of embedded 
tools for digital signal processing and mathematical data processing.

The program module for interaction with modules of hardware system complex 
(control and measuring equipment modules) provides software coordination of these 
modules with the software system as a whole. To link measurement module software 
to the system software a special library of programmer functions is used or API of 
functions — application programming interface, which is a set of tools for interacting 
with different types of software.

The module for interaction with system modules provides data exchange with the 
driver components that are responsible for the following operations: searching for 

Fig. 3.8. Processes spectral density estimates: a — stationary; b — periodically correlated
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connected device; geting device identifier; configuration and starting conversion 
process; checking the current status of the process of collecting and transmitting a 
signal about its completion; reading the received data and transfer it for further 
processing; stoping data collection and shutting down the device.

When system starts, shell library is loaded. With its help device working functions 
become available.

The first stage consists of procedures for searching and initializing respective 
control and measurement modules, after which they become ready for work as part of 
the monitoring system. Data collection starting signal is formed by calling a function 
that is responsible for setting working parameters: each individual module polling 
frequency, synchronization mode, data format, etc.

After completion the assembly cycle, measurement data arrays, which are 
transferred to data transmission channel input, are formed in control modules buffers. 
It could be a communication interface. The resulting arrays are transmitted to software 
modules that realize information signals processing functions — modules for primary 
informative parameters separation, their statistical processing and control process 
management.

The module for primary informative parameters separation could also be a part 
of the system depending on modules structure of control and measuring equipment 
of the system. This module provides accumulation of primary data and manages their 
transmission through a specialized interface to other software system modules for 
further statistical processing, building information fields’ distributions, and automatic 
recognition of data classes that correspond to different statuses of studied object.

Fig. 3.9. Software structure

Babak_КНИГА_N.indd   79 21.03.2018   14:42:12



80

CHAPTER 3. Simulation and software for diagnostic systems

Primary data accumulation module stores the input information arrays and 
reduces their dimension by selecting certain diagnostic features that are used for 
further processing, which makes it possible to improve data processing and system 
operation as a whole, as well as normalization of input vector to bring it to a given 
values range.

Video and thermal imaging data processing module (if appropriate units are 
presented in system’ hardware part) provides the following algorithms for images 
processing — increasing spatial resolution, increasing contrast, image filtering, sepa-
rating geometric primitives, and binding to standards. In addition, this module allows 
geometric measurements using 1D and 2D images to localize objects coordinates and 
sizes, as well as brightness measurements in tasks of processing information coming 
from thermal cameras. Developing this module, IMAQ Vision library of Lab VIEW 
environment was used.

Data class recognition module carries out input data classification for certain 
given characteristics, splitting the set of attribute vectors into clusters, and recognizing 
different classes (images). This module is realized on the basis of modified neural 
network that allowed us to build decision-making rules based on the minimum 
possible initial information, as well as to dynamically modify these rules in diagnostic 
process. These characteristics were obtained by making changes to the classical 
structures of neural networks and creating new algorithms for their operation.

The functional load of statistical data processing unit is the most important in 
monitoring system, so we will consider its software modules in more detail. Software 
structure of this block is presented in Fig. 3.10.

The module for preliminary sample data censoring is intended primarily to 
reduce the effect of sample values  with excessive errors and to identify progressive or 
periodic trends.

Fig. 3.10. Software structure of statistical data processing unit
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The first problem is solved by data filtration — window or median, depending on 
the input vector dimension, or using of statistical criteria, which, for a given confidence 
probability, allows calculation of boundary selective values  (according to Romanovsky 
and Dixon criteria).

To identify trends, we use the series criteria and the Foster-Stewart method that 
allows us to establish not only mathematical expectation trend, but also observations 
series variance trend.

Identification of experimental data distribution laws is necessary not only to 
confirm the fact of their homogeneity, but also to select one or another model of 
information field, and also could be used as a diagnostic feature.

Distribution laws identification module uses the following statistical tools: 
directed testing criteria for Gaussianness (compiled criterion) and uniformity (Frosini 
criterion), approximation of linear data distribution laws by Pearson curves, and 
approximation of angular data distributions laws by Mises and wounded Gaussian 
distributions.

Distribution laws identification module works as follows: previously censored 
sampled data is divided into linear and angular; linear data is checked for the belonging 
of selective distribution law to Gaussian or uniform directed criteria. If these 

Fig. 3.11. Control process management module structure
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hypotheses are not confirmed, an aproximation by Pearson distributions is made that 
is considered in subsequent calculations.

Angular data distribution laws are approximated either by Mises or wounded 
Gaussian distributions. The use of Mises distribution is more acceptable, since it has 
a mathematical record compared to the wounded Gaussian that leads to simpler 
estimates of distribution parameters.

Selective statistics determination module provides assessment of experimental 
data statistical parameters considering specified distribution law specified for further 
use in calculation of fields’ characteristics or control object status prediction.

Information fields’ characteristics determination is based on calculated statistical 
characteristics and considering selected field model.

Information fields could be constructed in both Cartesian and polar coordinates. 
Field characteristics definition module allows constructing field images in 3D as well 
as studying their characteristics changes over time.

Forecast calculation module performs regressive model construction of measured 
parameters behavior over time based on experimental data spline-approximation.

Developed forecasting technique allows obtaining forecast confidence intervals, 
where, with given probability, informative parameters values could be in the future. It 
actually allows predicting information fields’ behavior over time.

User interface formation, necessary settings installation, operating modes 
selection and indication of results are assigned to control unit, which architecture is 
shown in Figure 3.11.

Basic software code of developed software system is executed in modular structure 
that allows connecting and integrating of previously created subroutines and additional 
modules in high-level languages into the main program code, working with dynamic 
dll libraries, expanding the functionality of additional software modules and functions 
without making significant changes to basic software structure.

This approach allows adding necessary or eliminate unnecessary elements in 
system software without any complications, modernize and adapt system to the 
change of tasks and working conditions, etc. Getting a large amount of diagnostic 
information that needs processing complicates data processing algorithms and 
increases the time to analyze them. Therefore, at present, the use of intelligent 
computer technologies for solving monitoring objects status recognition problems is 
of high relevance. Recognition (clustering) problem is solved by developing and 
applying an artificial neural network.

The choice of this solution is due to neural networks ability to perform operations 
of processing, comparing and categorizing images that are not available to traditional 
mathematics, and possibility of self-learning and self-organization allows creating 
powerful intelligent systems to solve monitoring and diagnostics problems.
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3.3. NEURAL NETWORKS IN DIAGNOSTIC SYSTEMS

Neural network classifier in monitoring system provides nonlinear 
separation of features space, the ability to automatically replenish class library, high 
reliability of clustering in cases of minimimal initial information about recognized 
images and limited number of images for learning [44].

Solving the problem of clustering using neural networks there is a dilemma — it 
is necessary, during operation, to ensure, on the one hand, the plasticity of neural 
network memory (the ability to perceive new data and to create new clusters), and on 
the other hand to maintain stability, which guarantees that information about already 
known clusters is not destroyed and does not collapse [45]. This is achieved using the 
neural network of adaptive resonance theory — ART-2.

ART-2 neural network is not sensitive to input vectors presentation order, could 
work both with binary, and with continuous signals, has high speed and provides high 
authenticity of input signals identification. In addition, ART-2 network has a feature 
of classification errors self-correcting after a certain number of learning samples 
repeat presentation.

The ART network [43] is a vector classifier. The input vector is classified depen-
ding on image similarity to previously recorded images by the network. The decision 
about input vector identification the ART network expresses in a form of excitation of 
one of the recognition layer neurons. If the input vector does not match any of 
"reference" images, a new category is created (a new neuron is allocated and a new 
vector is remembered), corresponding to input vector. If it is determined that the 
input vector is similar to one of the vectors (standards) met before, according to a 
certain similarity criterion, the reference vector in the neural network memory will be 
changed (studied) under the influence of the new input vector to become more similar 
to this input vector.

Remembered image will not change if the current input vector does not appear 
to be very similar to it. New image could create additional classification categories, 
but it will not be able to force the existing memory to change.

ART network consists of two layers of neurons F
1 

(layer comparison) and F
2 

(recognition layer) [46]. F
1
 layer contains n neural elements that correspond to the 

input image dimension. Each neuron has synoptic relationships with F
2
 layer elements. 

Each F
2
 layer neuron characterizes some images cluster. Each network layer corres-

ponds to its own matrix of weight coefficients W and V. The direct weighted vector W
i
 

corresponds to i cluster, the reciprocal weighted vector V
j
 characterizes integral image 

corresponding to this cluster. The activity of F
1
 and F

2
 layers neurons is responsible for 

short-term memory, and weight vectors W and V — for long-term memory.
Basic equations describing the ART-2 network F

1 
comparison layer operation:

,( ) , / ( ), / ( ),
i i j j i i i i i

j

p u g y v q p e p u z e z= + = + = +∑

( ) ( ), , / ( ),
i i i i i i i i

z f t b f q s x a u t s e s= + ⋅ = + ⋅ = +
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where y
j
 — the output of the j-th neuron of F

2
 recognition layer; v

j, i
 — elements 

of weight coefficients V matrix; a and b — coefficients determined experimentally; 
e — parameter characterizing the relationship between F

1
 and F

2
 layers neurons 

operation time, 0 < e << 1; f (x) — neurons activation nonlinear signaling function.
Neurons activation function could be either continuously differentiated

2 2 22 / ( ), at 0
( ) ,

, at  

x x x
f x

x x

 ⋅θ⋅ + θ ≤ < θ
= 

≥ θ
or piecewise linear:

0, at 0
( ) .

, at  

x
f x

x x

≤ < θ
= 

≥ θ

ART-2 F
2
 recognition layer operation is described by the following equations:

, , max { : 1, },
j i i j k j

i

T p w T T j m= = =∑
,  at max ( )

( ) ,
0,  otherwise

k j
j

k

d T T
g y

=
= 


where w
i, j

 — weight coefficients W matrix elements; d — a constant determined 
experimentally.

Thus, comparison device will receive vector p
i
:

2

,

, with inactive neurons of the layer 
.

, with active neuron  
i

i

i k i

u F
p

u d v k


=  + ⋅

Comparison device activates mute signal if the following condition is not met:

ρ / (e + | r |) ≥ 1,

where ρ ∈ [0, 1] — classifier sensitivity coefficient; r = (r
1
, r

1
, ..., r

n
 ) — a vector 

characterizing the degree of difference of the input vector X from the "reference" 
vector W

k
 in network memory:

r
i
 = (u

i 
 + c ∙ p

i
 ) / (e + | u | + | c ∙ p |),

where с — weighted coefficient, selected from inequality:

c ≤ (1 – d ) / d.

In case of correct input vector classification, the mute signal is not activated, and 
weighted coefficients of W and V matrices are modified as follows:

, , , , , ,, ( )[ ] ( ),new old

j i j i j i j i j i j i i k i
v v v v g y p v d p v= + ∆ ∆ = − = ⋅ −

, , , , , ,, ( )[ ] ( ).new old

i j i j i j j i j i i j i i k
w w w w g y p w d p w= + ∆ ∆ = − = ⋅ −

where ,
old

j i
v , ,

new

j i
v , ,

old

i j
w , ,

new

i j
w  — V and W matrices weighted coefficients before and 

after modification accordingly.
At the beginning of network operation and formation of a new neuron (in case of 

a new class formation), corresponding weighted coefficients values are initialized by 
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the initial values:

, ,

1
0, , 1, ,  1, ,

(1 )
j i i j

v w i N j m
d N

= ≤ = =
−

where N —input vector X dimension; m — number of neurons in F
2
 recognition layer 

(number of classes in memory).
In order to increase efficiency of ART-2 network and clustering reliability, a new 

network architecture, algorithm for its operation and learning was developed [47].
Fig. 3.12 shows the developed ART-2 network structural scheme, where blocks, 

modified and supplemented in relation to classical ART-2 network, are selected.
Let’s analyze the differences of the new structure.
Firstly, in classical ART-2 network implementation, weighted coefficients of W 

and V matrices have almost identical values, that is, there is a duplication of values. In 
developed ART-2 network together with two matrixes of weighted coefficients an 
operation algorithm is implemented that provides the use of one weighted coefficients 
matrix, which reduces system memory consumption and the number of computing 
operations (in the process of modifying the weighted coefficients during learning and 
addressing the elements of corresponding matrices in calculations).

Developed network has the following relationship:

V = W     T.

Thus, required memory size and number of operations while modifying the 
weighting factors during learning are reduced twice.

Fig. 3.12. Classifier structural diagram based on ART-2 neural network
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Secondly, in classical ART-2 network realization, de facto only one criterion for 
assessement of input vector belonging to a certain class is selected. In new developed 
ART-2 neural network architecture, two weighted coefficients matrices were used to 
calculate two criteria for assessement of input vector belonging to a certain class, but 
their elements values are modified when learning in a way that differs from the classical 
theory.

In the proposed network, the algorithm of F
2
 recognition layer is described by the 

equations:

, , max { : 1, },
j i i j k j

i

T x w T T j m= = =∑
where w

i, j
 — weighted coefficients W matrix elements; x

i
 — input vector X elements.

F
1
 comparison layer operation remains unchanged. Modification of weighted 

coefficients during learning is carried out according to the following algorithm:

, , , , , ,, ( )[ ] ( ),new old

j i j i j i j i j i j i i k i
v v v v g y u v d u v= + ∆ ∆ = − = ⋅ −

, , , , , ,, ( )[ ] ( ),new old

i j i j i j j i j i i j i i k
w w w w g y x w d x w= + ∆ ∆ = − = ⋅ −

where ,
old

j i
v , ,

new

j i
v , ,

old

i j
w , ,

new

i j
w  — V and W matrices weighted coefficients before and 

after modification.
All other calculations are performed according to classical ART-2 network 

algorithm. This classifier based on ART-2 network has the following advantages in 
identification problem solution: stored information stability, the ability to dynamically 
expand its own knowledge base, high impedance, invariance to input vectors 
presentation order, the ability to automatically correct mistakes that were obtained at 
previous stages of learning.
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 TECHNICAL PROVISION 

OF DIAGNOSTIC SYSTEMS

ACOUSTIC DEVICES AND SYSTEMS 
FOR POWER PLANT MODULES DIAGNOSTICS 

Passive systems of functional diagnostics where noise and rhythmic 
signals (Table 1.2) are the source of information, arising from 
natural objects functioning [48], play an important role in controlling 
and diagnosing heat-energy equipment during their operation in 
the last decades.

Noise signals are the result of mechanical, aerodynamical, 
hydrodynamical and tribomechanical processes, which accompany 
heat and power equipment units operation, and manifest themselves 
in form of acoustic, magnetic, electric, thermal noise or broadband 
vibrations.

Rhythmic signals are the result of interaction of parts in the 
kinematic pairs of gas turbines, gas-piston engines, electric machi-
nes, compressors, etc., and, as a rule, appear in form of narrow-
band multifrequency vibrations.

Passive diagnostic systems based on the use of noise and rhythm 
signals are widely used to control and determine the heat energy 
objects technical status [49].

The most common systems for diagnosing heat energy equip-
ment that use noise signals — acoustic emission systems, acoustic 
contact — leak detection systems, and rhythmic signals — vibro-
acoustic systems [48].

Acoustic­emission systems [49]. In solids under the influence of 
stresses created by an external load, the material structure is 
dynamically restructured at a microscopic or macroscopic levels. 
As a result, continuous and discrete acoustic emission (AE) occurred. 

Continuous acoustic emission occurs during plastic deformation 
of bodies as a result of the motion of dislocations, twinning, and 
diffusionless phase transitions. Discrete emission results from 
microcracks formation. When material yield point is exceeded, it is 
a consequence of dynamic rearrangement of material structure 

4.1.
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under the action of high internal stresses caused by the accumulation of dislocations. 
The appearance of discrete emission characterizes the initial stage of destruction and 
it is associated with the formation, development and spreading of cracks.

Acoustic-emission signals recorded during plastic deformation and crack growth 
are significantly different. During plastic deformation, various metals and alloys emit 
a large number of exponential pulses of AE of small amplitude. Acoustic-emission 
signals of this type are recorded as a continuous process, and their realizations are 
similar to the realization of electronic devices thermal noise.

During the crack developing, every crack jump generates a separate exponential 
pulse of a discrete high-amplitude of AE. The development of a crack occurs unevenly 
and leads to the formation of a discrete acoustic-emission signal in the form of a 
chaotic sequence of short individual pulses or partially overlapping pulses, which 
have a high energy level. The implementation of discrete AE signal is similar to the 
implementation of electronic devices shot noise.

Characteristics of AE signals depend on many factors, primarily on the physico-
mechanical and acoustic properties of the monitored object, its geometry, the nature 
of the external load, and electroacoustic receiver characteristics. Basic measured 
parameters (GOST 27655-88) of AE signals are given in Table 4.1. Many companies 
and organizations are involved in the development and production of acousto-
emission diagnostic systems, among them the largest are Dunegan / Endevco, Tro-
dyne, PAC, DWC (USA); Brüel & Kjær (Denmark); AVT (Great Britain); 
Setim (France); Vallen-Systeme Gmbh (Germany); JSC "Introscope", "VNIINK" 
(Moldova); LLC "NDT In-marriage" (Belarus).

Modern acoustical emission systems are digital. They provide recording of AE 
signals and measurements of individual parameters of AE signals, and their 
probabilistic characteristics — the distribution of instantaneous values, correlation 
and spectral characteristics (Table 4.2).

Table 4.1. Basic measured parameters of AE signals

Parameter Symbol Determination

Number of AE pulses N
∑

Number of recorded pulses of a discrete AE during the 
observation time interval

Total account of AE N Number of recorded exceedances by AE pulses of established 
discrimination level by the observation time interval

AE activity ∑ Number of registered AE pulses per time unit

AE counting rate N
∙

The ratio of the total account of AE to the observation time 
interval 

AE energy E The energy released by the source of AE and transported by 
waves that arise in the material

Classification 
parameter

n Indicator of degree in an expression describing the dependence 
of the total AE count N on the intensity of stress K, N = aKn, 
where a is a constant reflecting the test conditions
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The analysis of the set of parameters of acoustic emission signals sequence allows 
determining the location of the source, its type and degree of danger.

Table 4.2 shows that basic universal module of acoustic emission diagnostic 
systems should contain up to 8 channels, the full dynamic range should be not less 
than 60 dB, the lower limit of frequency range lies in the range of 20...50 kHz, the 
upper limit is 2...3 MHz.

Systems of acoustic contact leakage [50]. Acoustic leakage signals are a consequence 
of hydrodynamic processes occurring in leakage of pressure pipelines under pressure 
drop influence. The properties of acoustic leakage signals essentially depend on the 
fluid flow regimes, which are determined primarily by the magnitude of pressure 
difference and geometric parameters of the gap.

There are the following basic modes of liquid outflow into the air — drip, 
continuous filling channel, cavitation, complete flow separation from the duct walls, 
intracanal jet disintegration.

Drip leakage. For water at a pressure drop of 0,75 MPa and a slit diameter of less 
than 0,04 mm, there is no movement in the channel and, as a consequence, any 
acoustic signals.

The movement of a liquid in a leak begins when there is a pressure drop sufficient 
overcome the surface tension. In this case, either individual droplets of liquid or 
individual gas bubbles are formed in the outlet section.

Table 4.2. Comparative characteristics of acoustic emission control and diagnostic systems
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AMSY-5, Vallen-
Systeme (Germany)

36
(up to 254)

16 bit,
10 MHz

10…2000 82 3 30 000

DiSP, «Physical 
Acoustics Corpora-
tion / MISTRAS 
Holdings Company»

8...52 16 bit,

10 MHz

10...2100 82 3 10 000 10

GALS-1, OKO 
Association 
(Ukraine)

1…100 16 bit,

2.5 MHz

10...800 95 5 52 000 11

AEC-USB, 
Introscop (Moldova)

1…32 — 10...500 — 5 —   7

Aline-32D, LLC 
"NTERIUNIS" 
(Belarus)

64 16 bit,

2 MHz

1...500 84 5 15 000   7

LOKUS-D, ZAT 
"ELTEST" (Russia)

4…32

(up to 80)

1 MHz 25...200 80 4 —   8
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Cavitation regime occurs with increasing pressure drop. For example, cavitation 
occurs in short slots of 5 ... 10 mm with a slit diameter of 0.1 ... 1.0 mm with pressure 
drops of about 0,1 MPa.

In the vicinity of the initial flow, liquid is separated from the walls of the channel 
and the formation of cavitation bubbles — caverns. The cavitation flow regime due to 
instability of the tail part of cavity is accompanied by strong acoustic signals, which 
exceed the noise of turbulence by an order of magnitude.

With a further increase in the pressure drop, an increase in the length of cavity, 
its exit from the end of channel and destruction are observed, as a result of which the 
regime of complete detachment of the liquid jet from the walls begins. At the same 
time, acoustic signals are minimal.

The mode of intracanal decay of a jet arises only in individual cases and for 
sufficiently large pressure drops. In this mode, the liquid jet is unstable, its curvature 
and decomposition into individual drops (spraying) could occurr. If the disintegration 
of jet occurs in the middle of the channel and the trajectory of particles motion of 
unstable jet or liquid droplets that are detached from the jet cross the channel walls, 
then significant acoustic signals emerge, the cause of which is the bombardment of 
the channel walls by separate fluid particles.

Useful acoustic signals (pseudo-sound) could also appear in test object wall in 
case of small flow velocities due to pressure pulsations on the channel wall caused by 
flow nonstationarity.

For acoustic contact leakage, the cavitation and continuous channel filling 
modes are of greatest interest. In these modes, the acoustic signals generated by 
turbulence and cavitation have a broadband continuous spectrum with an upper 
frequency of several megahertz. In the low-frequency part of the range (up to 60 kHz), 
the spectrum of acoustic signals, recorded during a leak, can have local maximum 
corresponding to the natural frequencies of the gap.

Methods and means of acoustic contact leakage are based on the analysis of 
characteristics and parameters of acoustic leakage signals, which registration is 
carried out by means of receiving converters that have direct contact with the wall 
of monitoring object. Basic characteristics of leak detection are accuracy of loca -
Їtion and control distance. The accuracy of location is the leak locating error, dis-
tance — the possible maximum distance from the leakage point to the receiving 
converter.

Most of the known devices and systems of acoustic contact leakage are based on 
acoustic leakage signals correlation processing. The principle of these devices is based 
on measuring the maximum mutual correlation function time delay between acoustic 
signals recorded by two separated receiving converters. The distance from the leak to 
one of the converters is calculated by the formula considering found delay, the distance 
between sensors and measured or specified sound velocity of the pipeline.

Some devices include acoustic leakage signals processing in frequency domain. 
Based on spectra and coherence function analysis, an informative area is determined, 
after which time signal processing is performed in the time domain.
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In Ukraine the instruments for acoustic leakage systems are mass produced in 
MP "DISIT" of the National Academy of Sciences of Ukraine and in the E. Pukhov 
Institute of Modeling Problems in Power Engineering of the NAS of Ukraine. 
Overseas leak detectors are produced by Seba KMT (Seba Dynatronic); Intereng 
Messtechnik Gmbh, FAST (Germany); Primayer Ltd, Palmer Environmental 
(United Kingdom); Gutermann (Switzerland); Metrovib (France); Fuji Tecom Inc. 
(Japan) Echologics Engineering (Canada) and others.

Table 4.3 shows basic characteristics of known leak detectors, which are desig ned 
to search the fluid leaks in steel or cast-iron pressure pipelines with a minimum 
diameter of 20 mm (dash means that information is not available). The required 
minimum pressure drop between the pipeline and the environment should be at 
least 0.2 MPa, the minimum for detecting the through opening defect is not less than 
0,1 mm.

These leak detection devices are portable and consist of several modules — piezo-
electric receiving converters, data transmission channel, measuring station for data 
collection, information processing unit. Pre-amplifier is built in sensor or made as a 
separate unit. Dynamic range is 60...70 dB, operating temperature: –30...+70 °C.

Vibrodiagnostic systems [51]. Vibrodiagnostics is one of the main and most 
promising methods for diagnosing heat and power equipment units, in particular gas 
turbine and steam turbine installations, power generators, electrical machines, 
pipelines.

This method is based on the study of characteristics of vibroacoustic signals and 
their parameters, which are the most sensitive to changes in technical status of objects, 

Table 4.3. Comparative characteristics of leak detectors

Name, manufacturer
Location 

accuracy, m
Frequency 
range, kHz

Pipeline 
diameter, m

Distance between 
sensors, m

Number 
of sensors

SeCorr-08, InterEng 
Messtechnik GmbH, 
(Germany)

— 0.001 … 10 — — 2

MicroCorr-6 DKL 1506, 
Seba KMT, (Germany)

— 0.005 … 5 25 … 1500 250 2

Correlux P-250, Seba 
KMT, (Germany)

— 0 … 4 — — 2

LC-2500, Fuji Tecom 
Inc., (Japan)

— 0.02 … 5 — — 2

Eureka3,Primayer Ltd., 
(Great Britain)

— 0.001 … 22 — — 2

KORSHUN-11, "Dysyt" 
NANU, (Ukraine)

± 0.1 0.005 … 4.5 to 1400 — 2

К-10.3М, Pukhov IMEE 
NASU, (Ukraine)

± 0.5 
(0.95 prob.)

— to 1200 100 3

ТКР-4102, "Inkotes", 
(Russia)

0.1% 
of leakage size

0.001 … 9 50 … 1200 — 2
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the appearance and development of damage, and could be determined directly on 
operating object.

Vibration parameters are frequency of periodic vibrations, amplitude and period 
of vibrations, peak value and mean square value of the vibrational quantity.

Primary values characterizing vibration are vibro-displacement, vibration 
velocity and vibration acceleration.

Modern instruments and vibrodiagnostic systems are based on the probabilistic 
analysis of vibroacoustic signals, in particular, on the analysis of the waveform and its 
distribution, spectral, correlation, cepstral analysis, wavelet analysis, etc. The most 

Table 4.4. Comparative characteristics of vibration analyzer

Name, manufacturer
Number

 of channels
Frequency 

range
Quantity 

of spectral lines
Screen, 

resolution
Weight, 

kg

2260, Brüel & Kjær (Denmark) 2 8 … 20 000 >400 PC,
192  ∙ 128

1.2

CSI 2140, Emerson (USA) 4 0 … 80 000 100 … 12 800 TFT, 
640  ∙ 480

1.79

Fluke 810, Fluke Corporation 
(USA)

4 2 … 20 000 800 VGA, 
320  ∙ 240

1.9

VD-1852, ITS «Vibrodiagnostika» 
(Ukraine)

2 0.3 … 40 000 50 … 12 800 PC 0.8

795МС911, NPP «KonTest» 
(Ukraine)

2 2 … 10 000 400 … 6400 РC,
160  ∙ 160

1.4

EKOFIZIKA-110А, 
«OKTAVA-Elektrondizain» 
Group (Russia)

1 25 … 48 000 200 OLED, 
320  ∙ 240

0.55

Kvartz/Topaz-В, «DIAMEH 
2000» Ltd. (Russia)

1 0.3 … 40 000 100 … 1600 РC,
 240  ∙ 128

2.5

Oniks, «DIAMEH 2000» Ltd. 
(Russia)

2 0.5 … 40 000 — WVGA, 
800  ∙ 480

2.5

STD-3300, «Technekon» Ltd. 
(Russia)

2 0 … 32 000 3200 … 25 600 LCD, 
320  ∙ 240

0.7

SD-21, «Assosiation VAST» 
(Russia)

2 0.5 … 256 000 400 … 1600 LCD, 
320  ∙ 240

0.7

ADP-3101, INKOTES Ltd. 
(Russia)

4 0.5 … 20 000 200 … 16 000 VGA, 
320  ∙ 240

2

SVAN 958, «Algorithm-Acoustic» 
(Russia)

4 0.1 … 20 000 400 … 1600 LCD, 
128  ∙ 64

0.5

ViAna-4, «Vibro-Center» Ltd. 
(Russia)

4 3 … 10 000 До 51 200 TFT, 
640  ∙ 480

2

Diana-2М, «Vibro-Center» Ltd. 
(Russia)

2 3 … 10 000 до 51 200 РC,
 320  ∙ 240

1.5

Vibran-3, «Interpribor» (Russia) 4 0.5 … 1000 0.5 … 1000 — 0.34
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common is the spectral analysis of vibrations that allows detecting various defects in 
thermal mechanical equipment elements — imbalance of rotor, impeller; misalignment 
of shafts; non-rigid fastening; defects in electric motors, compressors, pumps, fans, 
drive couplings, gear and belt drives, rolling and sliding bearings.

Vibrodiagnostics is carried out with the help of specialized equipment — 
vibrodiagnostic equipment, the requirements for which are determined by relevant 
regulatory documents. On the modern vibration diagnostics equipment market, an 
important role is played by a vibration analyzer — portable instrument for direct 
measurement of vibration parameters and for vibration signals processing. On the 
Ukrainian market, the most popular are vibration analyzers produced in Ukraine and 
Russia: NPP "Contest", ITC "Vibrodiagnostika" (Ukraine); INCOTES LLC, 
Interpribor SPE, Vibro-Center PPF, "DIAMEH 2000" (Russia); and also Brüel & 
Kjær (Denmark); Emerson, Fluke Corporation (USA).

All vibration analyzers, presented in Table 4.4, perform spectral analysis of signals 
in the frequency range from single Hz to tens of kHz using a fast Fourier transformation 
with spectrum number from 50 to 51 200. Vibro-analyzers’ displays are manufactured 
using electronic tubes (VGA), liquid crystals (LCD, TFT) or LEDs (LED) technology. 
Individual devices (VD-1852, AP1013) use a computer monitor. All vibro-analyzers 
have PC communication interface, most commonly USB.

Thus, diagnostic signals’ statistical analysis, in the most modern passive acoustic 
systems of functional diagnostics, is based on correlation-spectral methods that are 
comprehensive for Gaussian signals. However, analysis of theoretical and experimental 
studies results has shown [48] that noise and rhythmic signals, as a rule, are non-
Gaussian random processes and often have a uniform spectral density. This limits the 
capabilities of existing passive diagnostic systems based on methods of correlation 
and spectral analysis. 

One of the promising directions for further development of methods and means 
for thermal power facilities monitoring is improving existing and developing new 
passive diagnostic systems based on modern methods of the random processes theory 
and statistical processing of noise and rhythm signals. 

Creation of new passive diagnostic systems for determining the technical status 
of heat and power equipment elements, increasing their sensitivity and reliability 
requires the solution of the following main tasks:
§  construction of adequate mathematical models of noise and rhythmic signals 

accompanying the operation of heat and power equipment elements and reflect the 
physics of their occurrence;
§  determination of the most informative characteristics and parameters that 

allow monitoring and diagnostics of technical condition of heat power equipment 
elements;
§  development of statistical methods and software for experimental determination 

of new informative characteristics and parameters.

Babak_КНИГА_N.indd   93 21.03.2018   14:42:12



94

CHAPTER 4. Technical provision of diagnostic systems

4.2. DIAGNOSTIC SYSTEM 
FOR ELECTRIC POWER FACILITIES

A complex technical object can almost always be viewed in the form 
of a certain hierarchical structure [53]. This is especially evident in the case of the 
modern electric power system, where different organizational levels "from top to 
down" could be distinguished: from the central dispatching control and to construction 
elements of power generating equipment or electric networks, or in household 
electrical appliances of end user.

From the point of view of developing systems for diagnosing and monitoring the 
condition of electric power equipment, it is necessary to confine ourselves to the 
structure of a particular power plant, distribution substation, power line, etc [54].

As an example, Fig. 4.1 shows the hierarchy of electrical equipment of a 
traditional power plant (TPP, NPP, HPP) that is considered from the point of view of 
technical diagnostics.

At the first, the lowest level, construction elements of the power plant equipment 
main units are located. It is this level that determines what defects are possible in 
studied object. Deep study of the elements located on the first level of hierarchy gives 
all necessary information about types, causes and appearance of defects. As a result of 
this analysis, diagnostic models are constructed, diagnostic signals and parameters 
are selected.

The second level is equipment nodes that are constructively integrated whole. 
This includes rotor winding and stator rotating machines, magnetic circuits, bearing 
units, housing, bed, foundation, cooling system.

The third level represents electrotechnical equipment of power plants, generators, 
engines of own needs, transformers, switches, disconnectors, insulators, pumps, etc. 

The fourth level of hierarchy is the level of power plant as a whole.
Higher levels could also be considered: energy integration, the country’s energy 

system etc.
The structure of the diagnostic system being developed can be conditionally 

divided into hierarchical levels, similar to the way it was done above with regard to the 
power plant equipment (Fig. 4.2).

The distribution of functions between these hierarchical levels should be 
organized as follows:
§  level I — primary selection of diagnostic information (measurement of 

diagnostic signals, amplification, analog filtering, digitization);
§  level II — primary mathematical processing and the adoption of intermediate 

diagnostic solutions (simple algorithms, which implementation does not require 
significant computing resources, information separation by the degree of defects 
criticality), signaling to a higher level in the presence of appropriate prompt;
§  level III — collecting, complete processing deep data analysis, fast response to 

lower level alarm, adoption of diagnostic solution about diagnosed object as a whole, 
statistical data archivation, reliability prognosing and equipment residual life 
estimation, repair works planning.
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§  level IV — presenting data to different users (including geographically remote 
ones, for example via Web technologies) with access rights restriction depending on 
official duties.

It is advisable to combine the functions of levels I to III into a separate subsystem 
for each large object that is part of the power plant, for example — for each power 
unit, each powerful circulating pump, each transformer, etc., that is, for a certain set 
of structurally and logically combined units, forming a single whole and fairly 
compactly located in space. Therefore it is logical to call the system of this level a 
local technical diagnostic system (TDS).

The higher level IV, in turn, combines information flows coming from different 
level III systems. Therefore, it is advisable to call the level IV "central".

Fig. 4.1. Conditional levels of power plant’ electric power equipment
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According to the structural scheme above, at the top level of hierarchy of an 
intelligent distributed multi-level system for monitoring the status and diagnostics of 
electrical equipment is the central module — central diagnostic system (CDS). The 
CDS can be used to plan the operation of an object as a whole, design different kinds 
of reports etc. It is assumed that operating conditions of the CDS equipment are 
office premises, that is, there are no significant levels of harmful external influences, 
the operating temperature range corresponds to usual operating conditions, electric 
power is possible to take from the public network.

Low levels of system hierarchy are represented by components of the local 
diagnostic system (LDS). The equipment, which is part of the LDS, must operate 
under conditions of electric power facility production process. Such equipment must 
be protected from the effects of significant levels of electromagnetic interference, 
allow operation over a wide range of temperatures, and, possibly, in corrosive 
environments.

First of all, this requirement concerns measuring transducers, but it can also be 
extended to the whole list of equipment. This equipment belongs to I and II levels of 
hierarchy according to the classification adopted above.

Separately, we should consider the requirements for PC corresponding to the III 
level of hierarchy. Depending on the specific production conditions, this unit can be 

Fig. 4.2. Hierarchical organization of TDS for power plant
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located both in production zones (then special requirements apply to it) and in station 
operative personnel room (in this case there are no special requirements).

The functions, the LDS must perform, require this system to be built on the basis 
of digital computational tools. This applies to equipment of all hierarchical levels, 
except for measuring transducers, since most of the physical processes that need to be 
measured have an analogous nature.

Considering various factors (quite significant computing power of the CPU with 
"overclocking" possibility, significant RAM size, the availability of a large number of 
digital interfaces, the possibility of using a removable drive in the form of microSD 
memory card, the possibility of using widespread free Linux operating system, low power 
consumption, small overall dimensions, low price and high manufacturing quality), as 
a basic computational component for modules of II hierarchical level of the intelligent 
distributed system for diagnostics and monitoring thr electric power equipment was 
chosen as a single-board computer of the Raspberry Pi Model B+ type. Basic technical 
parameters of this computer are given in Table 4.5 (data taken from the offi cial site of 
the developer Raspberry Pi Foundation company, http://www.raspberrypi.org/).

There are a number of technological solutions on the market that have already 
become the standards of wireless digital communication and are used to exchange 
digital information between objects at a distance. Series of standards IEEE 802.11 
(WLAN, Wi-Fi), the standard 802.15.1/a (Bluetooth), and the standard 802.15.4 
(ZigBee) are widely applied [55]. All these standards are designed to use the 2,4 GHz 
radio frequency band, and do not require licensing for use around the world [56, 57]. 
Table 4.6 gives, for comparison, basic technical indicators of these standards.

Table 4.5. Basic technical characteristics of a single­board computer Raspberry Pi Model B+

Parameter Value

Model name Raspberry Pi Model B+

Producer Raspberry Pi Foundation, GB

Start of sale July 2014

Hardware platform Broadcom BCM2835

CPU 700 MHz, ARM1176JZF-S, ARM11 ARM architecture v6

RAM 512 МБ

Drive Slot microSD, до 64 ГБ

Operating Systems Linux (Raspbian, Debian, Fedora, Arch Linux)

USB 4

Number of output leads 40

Interfaces 26× GPIO, UART, I2C bus, SPI bus

Network interface Ethernet, 10/100 Mbps

Power supply 5 V, microUSB

Power consumption 650 mА, ≈3 W

Dimensions 85 × 56 × 17 mm
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Table 4.7. ZigBee wireless communication modules

Manufacturer, model, photo
Basic technical parameters specified 

by the manufacturer

EMBee, Ukraine
EMB-250-100BI-U-007

Frequency range 2.4-2.48 GHz
Communication range:

to 2000 m (direct visibility)
to 100 m (indoor)

Max output power 100 mW
Price — to order

Telit Wireless Solutions, USA
ZE51-2.4 RF USB Dongle

Frequency range 2.4-2.48 GHz
Communication range:

to 1000 m (direct visibility + antenna)
Max output power 2.5 mW
Data speed: 115.2 kbps
Price — £47.40 (without taxes)

Integration Associates, USA
IA OEM-DAUB1 2400

Frequency range 2.405-2.48 GHz
Communication range:

to 30 m (direct visibility)
Max output power 10 mW
USB 1.1 Interface
Price — £28.00 (without taxes)

Table 4.6. Comparison of basic wireless standards parameters 

Standard
802.15.4
ZigBee

802.15.1
BlueTooth

802.15.3
HighRate WPAN

802.11b
Wi-Fi

Direction of appli-
cation

Monitoring, control of 
sensor network, home / 
industrial automation

Voice, data, cable 
replace ment

Streaming mul-
timedia, replac-
ing audio / video 
cable

Data, video, 
local area 
networks

Main advantages Price, energy saving, 
network size, less 
loaded ranges

Price, energy sa-
ving, frequency 
hopping

High speed, 
ener gy saving

Speed, flexi-
bility

Carrying frequency 2.4 GHz

Maximum data 
transfer speed

250 kBit/s 1 MBit/s 22 MBit/s 11 MBit/s

Capacity, (dBm) 0 -10 0 (class 3)
4 (class 2)

20 (class 1)

0 20

Coverage radius (m) 100-1200 10 (class 3)
100 (class 1)

5-10 100

Sensitivity (dBm) –85 –70 –75 –76

Network size (Kb) 4-32 >250 — >1000
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request from sleep mode in less than 30 ms 
(compared to 3 s required for Bluetooth-based 
devices). This factor is essential in the construc-
tion of rapid response facilities, which, obvi-
ously, should be part of the diagnostic system.

Table 4.7 provides a list of some ZigBee 
wireless digital communication modules with 
USB interface. From their technical para-
meters comparison, it can be concluded that 
in an intelligent distributed diagnostic system 
a module of EMB-250-100BI-U-007 type 

from EMBее (Ukraine) and a module of ZE51-2.4 RF USB type from Telit Wireless 
Solutions (USA) are suitable for application. Module of IA OEM-DAUB1 2400 type 
by Integration Associates (USA) has a very short communication range, comparing 
to much cheaper modules of Bluetooth standard, and can not be used in this case.

Fig. 4.3 and 4.4 show laboratory samples of modules that are a part of the 
distributed hierarchical system of wind power unit (WPU) diagnostics, and Fig. 4.5 — 
location of the data acquisition unit from WPU low-shaft rotating parts.

Fig. 4.4. Module with autonomous power for recording vibrations on moving parts

Fig. 4.5. The registrator-transmitter (mo-
du le of data collection from rotating 
parts), mounted on WPU shaft

Fig. 4.3. Portable computer and ZigBee 
module

Considering significantly longer range of 
stable communication compared to rivals, the 
maximum number of network elements, the 
ability to self-organize and self-repair of net-
work, an advantage in building intelligent dis-
tributed diagnostic systems should be given to 
ZigBee standard. Devices implemented on the 
basis of the ZigBee standard have a power 
saving mode (sleep mode) that provides sig -
ni ficantly longer (up to 2 years) battery life of 
such devices compared to batteries of another 
rivals. ZigBee device can respond to an ex ter nal 
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According to the developed generalized structure of an intelligent distributed 
multi-level system for monitoring the status and diagnostics of electric power facilities, 
a prototype system that contains a number of units on various levels, built on single-
board miniature computing units and personal computers, was produced.

Algorithmic software managing interoperation of modules of the system was 
developed. Experimental check in demonstration mode showed operability of the 
developed prototype system, in particular, the possibility of reliable two-way data 
exchange between individual system modules.

4.3. DIAGNOSTIC SYSTEM 
FOR HEAT POWER FACILITIES

Maintenance of operational reliability, durability and safety of heat 
and power equipment is a complex task connected with the organization of reliable 
control of power plants and ensuring optimal conditions for their operation. To solve 
this problem, it is necessary to have special monitoring systems that allow monitoring 
of the heat engineering processes of generation, transportation and consumption of 
heat energy; measuring basic parameters of heat-power installations, equipment, 
machines, mechanisms, etc.; diagnosing and predicting the technical condition of 
installations and their units [58].

Basic parameters of the heat and power equipment, which is diagnosed, 
include:
§  general parameters — economic coefficients related to technological process 

factors;
§  metal structures characteristics— hardness, creep, fracture resistance, shells 

presence, impurities, scale formation of heating surfaces;
§  structures geometrical parameters — diameter and thickness of pipes, relative 

displacements of individual units;
§  thermophysical processes parameters — temperature of overheating zones of 

heating surfaces and vapor lines;
§  chemical processes parameters — condition of cooling media water;
§  noise processes parameters— appearance of acoustic emission signals, acoustic 

leakage signals, boiling fluid noise, noise in pipelines, etc.;
§  vibration parameters — vibration of boiler, pipelines, fans, smoke exhausters.
To solve the problems of big thermal power systems monitoring and diagnosing, 

it is expedient to use the system approach methodology. One of its main provisions is 
the separation of several levels of hierarchy in the heat energy system. Fig. 4.6 shows 
the hierarchical structure of the thermal power system of a large industrial enterprise. 
Elements of the V-level are complicated themselves (for example, a vapor turbine) 
and could be subject to further detalization at lower levels.

The tasks of hierarchical levels II-IV include, for example, distribution of 
different types of fuel between individual consumers; selection of composition and 
profile of basic power equipment; optimization of parameters and type of thermal 
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scheme of HSIE, etc. The tasks of V-level and lower hierarchical levels include the 
selection of optimal thermodynamic and design parameters of a specific heat power 
equipment with the parameters specified at levels II-IV [59].

This approach to the consideration of the heat and power system allows using of 
Smart Grid technology for individual levels diagnostics.

The emergence and development of the Smart Grid concept is a natural stage in 
the heat and power system evolution, caused on the one hand by the obvious needs 
and problems of modern heat and power market, and on the other hand by 
technological progress, primarily in the field of computer and information 
technologies.

The existing thermal power system without Smart Grid could be characterized as 
passive and centralized, especially the last circuit part — from distribution networks 
to consumers. In this part of the heat supply chain Smart Grid technology significantly 
changes the operating principles, offering new approaches to active and decentralized 
interaction.

Smart Grid technology (Fig. 4.7) is characterized by several innovative properties, 
corresponding to new market needs, among them:

1. Active bi-directional scheme of interaction and information exchange in real 
time between all elements (network participants) — from thermal energy producers 
to end users.

Fig. 4.6. Hierarchical structure of the thermal power system of a large enterprise
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2. Coverage of the whole technological chain of the system: producers of thermal 
energy, distribution networks and end users.

3. To ensure data exchange Smart Grid uses digital communication networks 
and data exchange interfaces. One of the most important goals of Smart Grid is to 
provide an almost continuous managed balance between demand and supply of thermal 
energy. To do this, network elements must constantly exchange information about the 
parameters of thermal energy, consumption and generation modes, the amount of 
energy consumed and planned consumption, and commercial information.

4. Smart Grid is able to effectively defend itself and self-recover from major 
disruptions, natural disasters, external threats.

5. Smart Grid helps optimal operation of heat and power system infrastructure.
6. From the overall economy point of view, Smart Grid promotes the emergence 

of new markets, players and services.
Smart Grid technology works through a system of special "smart" sensors installed 

in enterprises and in residential areas. They inform about the level of thermal energy 
consumption, which allows adjusting the use of heat engineering equipment in time 
and distribute heat energy, depending on the needs.

The newest information systems in the energy sector cover big data sets, Internet, 
wireless data transmission networks, "cloud" computer technologies, etc. In particular, 
the use of wireless sensors and other hardware equipment for thermal power plants 
has increased significantly in recent years. They measure and transmit to the control 
desk a large amount of information: temperature, pressure in the pipeline system, 
vibration characteristics and others. Having this information from wireless sensors, 
which in many cases can not be obtained in any other way, monitoring and diagnostic 
systems over a certain period can more effectively assess the need for preventive 
maintenance work on heat and power equipment [60].

Fig. 4.7. Schematic diagram of Smart Grid technology application directions
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Proceeding from the foregoing, the concept of Smart Grid essentially changes 
the requirements to reliability of heat and power networks equipment, and accordingly 
also requirements to means of its maintenance (Table 4.8).

In particular, within the traditional approach, equipment maintenance was 
carried out on the basis of preventive maintenance, and technical diagnostic tools 
were used to find defects after the object was taken out of work. Particularly important 
tools are equipped with their own contoling and monitoring systems that provide 
emergency signaling in the event of contingencies, but have insufficient means to 
identify, classify and localize defects.

Within the Smart Grid concept framework, it is assumed that maintenance and 
repairs will be carried out according to the actual status. To do this, largest part of the 
equipment will be covered by reliability assurance systems that will perform constant 
or periodic monitoring of its actual technical condition. In addition, these systems 
will have more possibilities: two-way information exchange at all levels, remote 
condition monitoring, failure prediction, spare parts planning, residual resource 
assessment, self-recovery of equipment [61].

In foreign literature, the above tasks are united under the general title of "Asset 
Management". Now both engineering and scientific works are being actively 
conducted in this direction, and their authors connect their results with the realization 
of the Smart Grid concept key moments. Leading manufacturers of heat and power 
equipment already now offer a number of software products designed to collect and 
summarize statistical information about operating conditions and the actual status of 
heat and power networks various equipment.

The need to equip a wide class of diverse heat and power equipment with 
diagnostics, monitoring and condition control systems means that these systems must 
be adaptive, more intelligent than existing ones. An important role in ensuring the 
broad capabilities of next-generation systems will be the distribution of computing 
resources between various diagnostic, monitoring and control systems operating at 
different levels of heat and power system hierarchy.

The essence of the developed system for diagnosing heat and power equipment is 
to monitor and make diagnostic decisions at each of the individual hierarchical levels, 
which allow identifying, localizing and eliminating defects before the diagnostic 
objects become faulty.

Table. 4.8. Comparison of traditional and new approaches 

to the maintenance of thermal power equipment and ensuring its reliability

Traditional approach Smart Grid

Functional diagnostics (continuously or perio-
dically) only for particularly sensitive objects
System of planned and preventive repairs
Diagnostic test (during scheduled stops)
Local systems for diagnostics, protection and 
automation for particularly important facilities

Condition diagnostics and remote monitoring 
for a wide class of equipment
Maintenance and repair by actual condition
Adaptive distributed security systems 
(diagnosis, monitoring status, self-recovery)
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Based on HSIE equipment hierarchy, the system measures diagnostic signals that 
carry information about the actual status of equipment units that are diagnosed. Thus, 
the system can include sensors of those physical quantities that are used to diagnose a 
specific system. Depending on the object of diagnosis, the system may include [62]:
§  thermocouples or thermistors — for measuring temperature;
§  accelerometers — for measuring vibration parameters;
§  measuring microphones — for acoustic noise level determination;
§  electrical quantities sensors— for measuring the parameters of transformers 

functioning;
§  pressure sensors — for monitoring the depression in the furnace;
§  gas sensors — for determining the concentration of harmful substances in the 

smoke path;
§  thermal energy meters — for determining the current operating mode of heat 

engineering equipment, etc.
Modern diagnostic systems are almost always built on the basis of some digital 

calculation means (microcontroller, personal computer, industrial workstation, etc.). 
For a diagnostic system that conforms to the basic principles of Smart Grid concept, 
this requirement is mandatory, since in the framework of smart networks, information 
is exchanged in digital form. Thus, measured signals must be digitized for further 
processing in the computing core of the system. The final stage of information pro-
cessing within the diagnostic system is the reflection of the results to users. For this 
the system structure includes appropriate tools, which, in particular, should provide 
authorization for system users, access rights distribution, and information protection.

It should be noted that a significant number of diagnostic signals could be 
measured in complex diagnostic systems, which leads to a huge exchange of infor-
mation between system components. To reduce the load on communication channels, 
decentralization principle of computing resources is applied, which is one of the basic 
Smart Grid concept principles.

Thus, the structure of the diagnostic system that is being developed can be 
conditionally divided into hierarchical levels, similar to the way it was done above 
with heat engineering equipment of the heat and power system (Fig. 4.8).

The distribution of functions between hierarchical levels of the system under 
development is expediently organized as follows:
§  level I (Measuring Transducers (MT)) — primary selection of diagnostic 

information (measurement of diagnostic signals, amplification, analog filtration, 
digital conversion);
§  level II (LDS) — collecting, complete processing deep data analysis, fast 

response to lower level alarm, adoption of diagnostic solution about diagnosed object 
as a whole, statistical data archivation, reliability prognosing and equipment residual 
life estimation, repair works planning;
§  level III (CDS) — data representation for various users (including geographically 

remote, for example, through Web technologies) with restricted access rights 
depending on their official duties.
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To display information for local users (for example, maintenance personnel), as 
well as to exchange information with the central TPS diagnostic system, all LDSs are 
included in an Ethernet-based LAN.

To enable information exchange with external users (this could be both people 
and devices operating outside of this TPS, but integrated into a "smart network"), the 
CDS has a connection to the global network (Internet). Thus, a number of serious 
problems arise in ensuring information security and preventing possible terrorist 
attacks. To solve these problems, special network security hardware is used.

The system for heat engineering equipment diagnostics can work both with wired 
and wireless LDSs. Wired LDS consists of a matching unit (MU), a switch (S), an 
analog-to-digital converter (ADC) and PC. Wireless LDS consists of a block of 
transformation (BT), a microcontroller (MC), a wireless communication (WC) and 
PC. The use of both wired and wireless LDSs can significantly expand the classes of 
heat and power equipment that is diagnosed.

Consideration of the degree of critical defects at the stage of system development 
makes it possible to simplify its structure; reduce the amount of information that is 
processed in the system and transmitted between its hierarchical levels; and ultimately 
reduce system cost while maintaining its functionality at an adequate level.

The main advantages of the proposed system for diagnosing heat energy 
equipment based on Smart Grid are:
§  reliability (Smart Grid prevents massive heat off);
§  security (Smart Grid constantly monitors all elements of the network in terms 

of their operation safety);

Fig. 4.8. Structure of the multi-level system of heat engineering equipment diagnostics
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§  energy efficiency (reduction of thermal energy consumption, optimal 
consumption leads to a decrease in the requirements for generating capacities);
§  ecological compatibility (achieved by reducing the amount and power of 

generating elements of the network, leading to a decrease in the concentration of 
harmful substances in the surrounding space (CO, NO

x
, C

x
H

y
, H

2
, C, etc.).

§  financial profitability (operating costs reduction; consumers have accurate cost 
information and can optimize their heat energy costs; in turn, business can optimally 
plan operation costs and development of generation and distribution networks).

4.4. COMBUSTION PROCESS FEATURES

Fuel combustion monitoring is reduced to monitoring of waste 
gases content, while the studied objects are boiler and air-fuel path [63]. The structural 
diagram of fuel combustion monitoring is shown in Fig. 4.9.

The efficiency of boiler unit is determined by the efficiency of its components: 
burners, heating surfaces, heat exchangers (economizers, air heaters), draft machines 
and other devices. One of the most important components of the combustion process 
is fuel combustion efficiency, that is, the economy of the operation of the burners 
themselves and associated equipment (fans and smoke exhausters).

The equation of boiler heat balance in general form in stationary mode has the 
following form:

Q
N
 = Q

1
 + Q

2
 + Q

3
 + Q

4
 + Q

5
 + Q

6
 ,

where Q
N
 — available heat, Q

1
 — useful heat, Q

2
 — heat loss with the exhaust gases, 

Q
3
 — heat loss with combustion chemical incompleteness, Q

4
 — heat loss with 

combustion mechanical incompleteness, Q
5
 — heat loss from the heating surfaces, 

Q
6
 — the loss from the slag physical heat.

Fuel combustion economy is characterized by the efficiency value that represents 
the difference between the thermal energy that was released during the fuel combustion 
and the energy losses in boiler unit. Efficiency can be determined by direct and reverse 
balance: 

Q
1
 / Q

N
 = q

1
 = η

d
 — efficiency in direct balance;

η
r
 = 100 – (q

1
 + q

2
 + q

3
 + q

4
 + q

5
 + q

6 
) — efficiency in reverse balance.

The main losses of heat during the natural gas combustion are heat losses with 
exhaust gases; thermal losses associated with combustion chemical incompleteness; 
heat losses from heating surfaces. The heat losses with exhaust gases depend on: 
the temperature difference between the exhaust gases and the air supplied to the boiler 
furnace and the residual oxygen content in the off-gas that characterized the air excess 
ratio (AER, α) or the air-fuel ratio. These losses are significant (for small and medium-
sized boilers they can be from 10 to 26 %, for gas boilers and power plants boilers — 
6-12 %) and mainly affect the boiler efficiency.

Fig. 4.10 shows heat losses with exhaust gases, calculated by M.B. Ravich 
method, for different values of exhaust gases temperature.
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According to the methodology based on the generalized characteristics of the 
fuel, during the combustion of natural and associated gases q

2
 is determined by the 

formula (%):
q

2
 = 0.01 ∙ z ∙ (t

g
 – t

a 
),

where z takes the tabulated value [64], t
g
 — the temperature of exhaust gases, t

a
 — the 

ambient temperature. At the same time, increasing t
g
 by 10 °C above the normal value 

for a given boiler load cause increasing q
2
 by at least 0.5%, and increasing — by 0.1 

cause increasing q
2
 by about 1%.

Heat losses with chemical fuel underburning depend on: air excess ratio, the 
quality of fuel and air mixing; the completeness of fuel combustion and the content 

Fig. 4.9.  Structural scheme of combustion process monitoring 

Fig. 4.10. Heat losses with exhaust gases in boiler with different composition of combustion products
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of combustible residues in the off-gas 
([CO] + [H

2
] + [CH]). These losses 

should be minimized with proper orga-
nization of the combustion process.

According to the procedure given 
above, heat losses with combustion che-
mical incompleteness q

3
 are deter mi-

ned from the data of fuel combustion products according to the formulas:

2 4
3

2 4

35 [CO] 30 [H ] 100 [CH ]

CO CO CH
q

⋅ + ⋅ + ⋅
=

+ +
 — for natural gas;

 

2 4
3

2 4

40 [CO] 30 [H ] 110 [CH ]

CO CO CH
q

⋅ + ⋅ + ⋅
=

+ +
 — for petroleum gas.

Heat losses from incomplete fuel combustion can be significant, and reach the 
values in the range from 3.5 to 7 % (depending on the air excess ratio). In this case, 
with certain structural features, combustible gases can be burned without loss of q

3
.

Heat losses to the environment q
5
 include the heat, which is given off by lining 

and other boiler parts to the environment. The value of q
5
 depends on the quality of 

the lining and insulation of the external walls of the unit and on the temperature 
difference between its external surface and the environment. For hot-water boilers of 
the type KV-GM, KVG, TVG, KSVT, KSV, Turbomat, the dependence of heat losses 
to the environment q

5
 from the boiler thermal power is shown in Fig. 4.11.

For different types of boilers the value of the parameter q
5
 according to Fig. 4.11 

does not correspond to reality in connection with their structural features. Therefore, 
to compare the functioning of boilers and other thermal units operating with natural 
gas, there is the use of fuel utilization factor (FUF):

η
u
 = 100 – (q

2
 + q

3 
)

Fig. 4.12 shows a theoretical graph of the dependence of natural gas combustion 
products from the air excess ratio with complete fuel combustion.

Table 4.9 shows the composition and quantity of methane combustion products 
(as basic component of natural gas).

The decrease of air excess ratio contributes to: decreasing the oxygen concentration 
in exhaust gases, increasing the efficiency and, as a consequence, decreasing the 
temperature of exhaust gases and the electricity consumption by the fan and 
exhauster.

Simultaneously, the emissions level of harmful nitrogen oxides (NO
x 
) is reduced, 

which leads to a reduction of environmental pollution. The appearance of chemical 
underburning (CO) in the fuel combustion products determines the limit of the 
permissible effect on the air supply reduction. This boundary is unstable and depends 

Fig. 4.11. Dependence of heat loss in the en-
vironment from the boiler heat output
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Fig. 4.12. Dependence of the combustion products composition from AER

Table 4.9. Composition and amount of methane combustion products

Indicator
AER, α

1 1.1 1.2 1.3 1.4 1.5 2

Air consumption, m3/m3 9.52 10.47 11.42 12.38 13.33 14.28 19.04

Quantity of products com-
bustion m3/m3:

       

wet 10.52 11.47 12.42 13.38 14.33 15.28 20.04

dry 8.52 9.47 10.42 11.38 12.33 13.28 18.04
Composition of combustion
products, vol. %:

       

wet

  "

  "

  "

[H
2
O] 19.11 17.43 16.1 14.95 13.96 13.09 9.98

[CO
2
] 9.51 8.72 8.05 7.48 6.98 6.54 4.99

[O
2
] — 1.74 3.22 4.49 5.58 6.54 9.98

[N
2
] 71.38 72.11 72.63 73.08 73.48 73.83 75.05

dry

  "

  "

[CO
2
] 11.74 10.56 9.59 8.79 8.11 7.53 5.54

[O
2
] — 2.11 3.84 5.27 6.49 7.53 11.09

[N
2
] 88.26 87.33 86.57 85.94 85.4 84.94 83.37

on the characteristics of burners and boiler load. Its position is also affected by fuel 
composition; climatic conditions; tem perature of fuel and air; techni cal condition of 
the equipment and many other factors. The area of eco no mi cally advantageous fuel 
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combus tion regime is responsible for 
a low oxy gen content (0.5-1.5%) 
and the ap pearance of chemical un-
derbur ning at a level of more than 
200 ppm [65].

The optimum composition of 
the waste gases of the boiler plant is 
given in Table. 4.10.

Monitoring of the fuel combus-
tion is carried out on the basis of 
physical and chemical methods of 
control, the comparison of which 
with the help of a universal qualitative 

efficiency criterion (UQEC) is given in Table. 4.11.
Today most heating boilers operate with regime maps that are updated every 

three years. In these maps, the amount of air supplied to the combustion does not 
depend on the change in fuel characteristics and equipment condition. During the 
preparation of the regime map, the commissioners deliberately increase air 
consumption for combustion, to avoid chemical underburning caused by the lack of 
stationary instruments for monitoring the waste gases composition, and by the fact 
that boilers often work with manual regulation of fuel and air supply.

In addition, the lack of furnace and chimneys hermeticity control leads to 
increasing of exhauster efficiency through the air inflow from the boiler room. During 
operation, the operator visually determines the combustion quality, as a result of 

Table 4.10. Optimal composition of dry 

natural gas combustion products

Components
Optimal 

concentration, %
Note

[О
2
] 0.5-5 Oxygen

[СО
2
] 12-16 Carbon dioxide

[СО] <0.01 Carbon monoxide

[NO
x
] <0.02 Nitrogen oxides

[CH
4
] <0.01 Methane

[H
2
O] ~0 Water in vapour form

Other 
components

~0 Solid residues

Table 4.11. Comparison of methods for controlling the composition of waste gases based on UQEC

Method
Parameter

UQEC
Speed Reliability Multicomponent Selectivity Cost

Magnetic 0 1 1 0 0 0.4
Thermoconductivity 0 1 1 0 1 0.6
Thermochemical 0 1 1 0 0 0.4
Pneumoacoustic 0 0 0 0 1 0.2
Pneumatic 0 1 1 0 1 0.6
Infrared 1 1 1 1 0 0.8
Hemiluminescent 1 0 1 1 1 0.8
Semiconductor 0 1 1 0 0 0.4
Polarographic 1 1 1 1 1 1
Fluorescent 1 0 1 1 1 0.8
Photolarometric 1 0 1 0 0 0.4
Ionization 1 0 1 0 0 0.4
Thermomagnetic 1 1 1 1 0 0.8
Standard 1 1 1 1 1 1
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which the air flow can increase even more and the operating point will shift to the 
region of large α. All this leads to fuel over-consumption and increased pollutants 
emission into the atmosphere.

Approach boiler operation closer to the most rational operation modes could be 
done with gas analyzers (Table 4.12) or combustion process automatic control systems 
(Table 4.13). Most of the latter is based on the use of a combined informing method 
about the content of residual oxygen and incomplete combustion products with a 
cross restriction, which allows more accurate (in comparison with parallel control) 
maintaining the air-fuel ratio [66].

Such systems reduce the oxygen content in exhaust gases until carbon monoxide 
appears in them (the optimum is between 50 and 200 ppm) [65]. The appearance of 
CO in exhaust gases indicates the formation of local zones in the boiler furnace with 
a chemical underfiring of the fuel.

Table 4.12. Portable gas analyzers

Name Substances
Setting 
time, s

Producing 
country

Cost, $ Foto

PEM-4М2 O
2
, CO, CO

2
, 

NO, NO
2
, SO

2

120 Russian 
Federation

On request

PGA-600 O
2
, CO, CO

2
, 

NO
2
, SO

2
, H

2
, 

CH
4
, C

3
H

8
, 

H
2
S, NH

3
, Cl

2

60 Russian 
Federation

~900

TESTO-350 O
2
, CO, NO, 

NO
2
, SO

2

60 Germany ~4700

OKSI-5М O
2
, CO, CO

2
, 

NO, NO
2
, SO

2

30 Ukraine ~1500

GreenLine 
8000

O
2
, CO, CO

2
, 

NO, NO
2
, 

SO
2
, C

x
H

y

180 Italy on request
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Basic disadvantages of such systems are the following: presence of sampling and 
sample preparation systems that significantly increases the measurement time; the 
absence of fans and smoke exhausters frequency regulation that makes it difficult to 
maintain the optimal fuel combustion mode; long system installation time; relatively 
long payback period; designed exclusively for large-capacity boilers.

A fundamentally new approach to the fuel combustion monitoring is based on 
the use of a broadband oxygen sensor (Fig. 4.13) [67].

At present, oxygen probes are widespread in the automotive industry due to the 
constantly growing strict regulations for the toxicity of exhaust gases. An essential 
advantage of such probes is the CO oxidation on the surface of the sensor containing 
ZrO

2
. This makes it possible to obtain information on the actual oxygen concentration 

in combustion products. The disadvantage of their application is the impossibility of 

Table 4.13. Fuel combustion control systems of boiler units

Name System composition Disadvantages Foto

EKO-3 Converter of fan and 
smoke exhauster drive 
frequency; Gas pressu-
re sensor on the burner; 
CO and O

2
 sensors; 

Throt tle sensor in the 
chimney; LogicCon 
cont rol panel; GPRS 
modem

Internet connection;
Technological com -
plexity of development;
Significant operating 
costs during system 
connection; Designed 
exclusively for boiler 
units of high capacity

FAKEL-2 СО and О
2
 sensors;

Microprocessor regu-
lator «Mini term-400»;
Recorder «Technogra-
160»; Vapour flow meter

Sampling and prepa-
ration systems; Ab sen-
ce of fan and smoke 
exhaust frequency re-
  gulation; Felatively 
long payback period 
(up to 2 years)

IT16RN-1 Control system for com-
bustion process SKPG-
1m; Block of test pre pa-
ra tion GMS-1; Display 
board di16; Communi-
cation and power sup-
ply unit CSB-1

Sampling and prepara -
tion systems; Rela tive-
ly large time of sys tem 
installation; Relatively 
long pay back period

ANGOR Gas analyzer 
«ANGOR- C» (O

2
, 

CO); Controller 
«SPECON SK-2»;
Gas pressure sensor on 
the burner

Absence of fan and 
smoke exhaust Fre qu-
ency regulation; De sig -
ned exclusively for 
boiler units of high ca -
pacity

Babak_КНИГА_N.indd   112 21.03.2018   14:42:13



113

4.4. Combustion process features

detecting chemical underburning in zone of α  >  1, however, as experimental data 
showed, supporting the boiler operation with an air excess ratio α ≥ 1.1-1.15 excludes 
the possibility of CO formation at a level of more than 200 ppm.

The probe construct assumes the presence of two chambers (cells): mea suring 
and pumping (Fig. 4.13 b). Through the hole in pump cell wall, exhaust gases enter 
the measuring chamber (diffusion gap) in the Nernst cell. This configuration is 

Table 4.14. Amperage dependence on air excess ratio in an oxygen probe

І, mА –3 –2 –1 –0.5 0 0.5 1 1.5 2 2.5 3

α 0.75 0.82 0.90 0.95 1 1.12 1.27 1.46 1.71 2.06 2.59

Fig. 4.13. Broadband oxygen probe: a — appearance; b — structural scheme (1 — Nernst cell, 2 — 
reference cell, 3 — heater, 4 — diffusion slit, 5 — pumping cell, 6 — air and fuel tract)

Table 4.15. Technical characteristics of the fuel combustion monitoring system

Parameter Value

Output signal of the measuring probe, V +0.1 … +5.0
Recall (time delay of indication) for 50% step perturbation, s 0.1 … 0.3
Initial preparation time for measurements, s ≤30.0
Measuring range of the parameter α 0.5 … 1.5
Relative error, % 3
Indication of measurement results LED
Cable length, m ≤5
Ambient temperature at relative humidity up to 80%:

display unit, oC 5 … 50
boxes of the measuring probe, оС 5 … 70

Conditions at the measurement point:
ambient temperature, oC 50 … 250
flow rate, m / s ≤15
pressure, Pa ≤ ±500
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characterized by a constant main te-
nan ce of the stoi chiometric air-fuel 
ratio in diffusion chamber. Supply 
voltage modulating electronic circuit 
maintains compo sition of the mixture 
corresponding to α = 1 in measuring 
chamber. For this purpose, the pump 
cell removes oxygen from the diffusion 
gap into the external medium with a 
lean mixture and an excess of oxygen 

in exhaust gases, and, with the enriched mixture and insufficient oxygen, pumps the 
oxygen molecules from the surrounding medium into the diffusion gap. Current 
direction during oxygen pumping also differs (Table 4.14).

Fig. 4.15. Block diagram of automatic control system of the fuel combustion process in boiler units 
of small and average power on the basis of an oxygen probe

Fig. 4.14. Monitoring system for fuel com-
bustion in boiler units: 1 — broadband oxy-
gen probe, 2 — alpha indicator, 3 — control-
ler, 4 — USB interface
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A system for monitoring the fuel combustion in small and medium power boilers 
based on an oxygen probe is shown in Fig. 4.14 [68].

Technical characteristics of monitoring system for fuel combustion in boilers are 
given in Table. 4.15.

Using a broadband oxygen sensor in the monitoring system has a number of advan-
tages over conventional gas analyzing devices: the absence of a sampling and sample 
preparation system, rapid measurement of oxygen concentration (0.1-0.2 s), uninter rupted 
operation, long service life, easy installation for various types of thermal aggregates.

In general, the monitoring system allows:
§  optimizing the fuel combustion, taking into account actual conditions, boiler 

operating conditions and fuel characteristics;
§  reducing fuel consumption for at least 10%;
§  reducing nitrogen oxide emissions up to 40%;
§  reducing the level of carbon monoxide emissions up to 50%;
§  increasing the boiler efficiency for at least 5%;
§  simplifying staff work operations.
The features of the developed fuel combustion monitoring system in boilers of 

small and medium power make it possible to use it for the automatic control system 
of the fuel combustion process. Fig. 4.15 shows a structural diagram of such system 
functioning.

Main purpose of the control system is the fan motor speed regulation. This will 
encourage the optimum combustion regime in the boiler furnace, that is, provide the 
most favorable conditions for complete fuel combustion. The system supplies the 
required quantity of air to the furnace based on information received from its primary 
sensors (oxygen probe, temperature sensors and vacuum).

The task of maintaining the optimum combustion regime is ensured by selecting 
the necessary speed of motors rotation of the traction mechanisms with fully open 
guide devices in practically the entire range of the operating capacity of the O

2
-cor-

rected combustion.
The specified control system provides:
§  rational natural gas consumption (saves 5-10% per year);
§  reduction of electric power consumption by asynchronous wired motors of 

traction mechanisms (saves of 30-75% per year);
§  reduction of emission to atmosphere due to complete fuel combustion.

4.5. APPLICATION OF DEVELOPED METHODS 
TO A RENEWABLE ENERGY EXPERT SYSTEM

Policy makers over the world show increasing concern about the 
environment. There is considerable interest in using novel methods to generate 
electrical energy including wind, wave, and solar energy sources. The main reason is 
that conventional fuels are limited and expensive, whereas other forms, known as the 
renewables, are limitless and cheap. Renewable energy is expected to capture a 
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growing percent of world energy market over the next 20 years. The key drivers of the 
"Renewable Energy Revolution" are [69]:

a) Increasing global energy demand.
b) Concerns about carbon emissions.
c) Сoncerns about energy independence.
d) Falling cost of renewable energy.
Despite well-recognized social benefits of renewable sources of energy, the main 

driver for the development of these types of energy projects, or indeed any type, is 
their financial viability [70, 71]. Few would argue that generating electricity from the 
wind makes environmental sense. Wind is a clean, renewable energy source and, if 
sited sensitively, wind parks have limited environmental impact. The economic 
valibility of a Wind Energy Conversion System (WECS) for a particular wind pattern 
depends on the success with which the system extracts the maximum possible energy 
in the most efficient way. 

Reliability of wind generators is a very important problem. Development of wind 
generators diagnostic systems and their implementation to the modern wind energy 
generators can improve their reliability. 

In today’s competitive power market, cost effective equipment servicing is 
believed by many to be one of the most important parts of the business — for 
manufacturers and plant owners alike. Even financing or insuring power plant sees it 
as a key ingredient in running a successful generating business [72]. 

SmartSignal’s equipment condition monitoring (eCM). Unlike preventive main-
tenance practices, which recommend maintenance based on failure statistics for a 
class of equipment problems over time, predictive condition monitoring provides 
equipment-specific, condition-based early warning. Predictive condition monitoring 
products, like SmartSignal’s equipment condition monitoring (eCM) [73], provide 
advanced, equipment-specific warning of deteoriorating conditions leading to failure 
or poor performance of all equipment makes and types.

In the power generation industry, predictive condition monitoring provides early 
warning of failure of combustion turbines, steam turbines, boiler feedwater pumps, 
coal pulverizers, electrostatic precipitators and cooling water pumps.

Compared to traditional technologies, SmartSignal eCM demonstrates signifi-
cant advantages such as monitoring multiple equipment operating modes like partial 
load conditions, analyzing multiple equipment, and creating serial number specific models.

Comparing SmartSignal eCM to traditional threshold limit technology helps 
explain the predictive technology. In traditional monitoring, the manufacturer re-
commended upper and lower sensor threshold limits to initiate machine trips to avoid 
damage. Manufacturers set the thresholds based on deep first principle understanding 
of the equipment design parameters. In contrast, the SmartSignal eCM models sensor 
values of normal equipment performance instead of design parameters for each serial 
number piece of monitored equipment. Doing so enables the software to quickly 
deploy enterprise wide fleet monitoring solutions compared to other technology such 
as neural network applications.
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To start up, the SmartSignal eCM uses plant historical data to create a perso-
nalized, empirical model of the equipment’s normal operation range. Both 
"personalized" and "empirical" are key distinction: personalized because the model is 
for that equipment serial number and empirical because the model is built using only 
the actual operating data, no detailed engineering knowledge of the engine is needed 
on the stage. This empirical serial number specific model of normal equipment 
operation creates an estimate for each sensor, in real-time, based on values of 
correlated sensors. The software compares actual sensor values to estimated sensor 
values and detects subtle but significant differences, called residuals (residuals provide 
the basis for early warning of abnormal equipment conditions.

From the process standpoint, eCM starts by collecting a "snapshot" of sensor 
values that make up an eCM model. eCM automatically creates an empirical model 
of normal performance of the asset using that statistical "snapshot". Unlike other 
monitoring techniques, in real-time the eCM empirical model generates an estimated 
value for each sensor that would be characteristic of normal operation. As previously 
noted, each sensor estimate is based not only on that sensor’s history but also based 
on how that sensor interacted with every other sensor value.

The result is a data-driven empirical model of each asset. Then, in real-time, the 
software effectively removes the effect of normal operation by subtracting in estimated 
values from the actual values just collected to generate "residuals". If the equipment is 
running normally, the resulting residuals should be small and evenly distributed 
around zero. 

Equipment faults show up as spikes or trends in the residuals. eCM compared 
the residuals using a patented statistical technique. If significant deviations are found 
the equipment is running abnormally, and the eCM issues an "alert". The "alert" are 
fed into diagnostic rules engine, which analyses the pattern of alerts to see if this is a 
known pattern or if it meets the preestablished criteria for being promote into an item 
on the WatchList and/or notifying an analyst (these criteria are set-up during the 
SmartStart Installation methodology phase).

Information about the incident is fed back into the eCM database and all the 
information can be sent back to the control system.

Many diagnostic professionals have relatively little knowledge about the proce-
sses they have to analyze, and sometimes they even try to tune existing diagnostic (or 
expert) systems or develop new diagnosis strategies without sufficient process know-
ledge [74]. However, analyzed process knowledge is one, if not the most important, 
factor in achieving effective control. The better we know the behavior and specific of 
the process, the better able are we to choose the right diagnostic scheme and to find 
the best suited tuning for the given situation and performance requirement. 

To achieve good diagnostic performance we must have knowledge regarding:
a) the process;
b) process diagnostic;
c) the diagnostic system.
Knowledge of the process, is quite likely the most important of the three. Included 
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in this process knowledge should be the type of the process behavior we have to deal 
with as well as the static and dynamic process parameters that are involved. 

Knowledge of process diagnostic, is the most obvious. Without a thorough 
understanding of the fundamental behavior of diagnostic systems, and the various 
approaches used to configure and tune them, we can newer (or least not in an 
acceptable amount of time) achieve reasonable diagnostic performance.

Diagnostic system, is fairly easy to understand. Without an in-depth knowledge 
of the distributed diagnostic system and its features, we are in no position to even 
attempt to implement diagnostic scheme. 

General information about the process is certainly needed, but is not sufficient 
to achieve optimum diagnostics.

Ukrainian complex wind generators building program was started in 1997. 
Implementation of wind generators to Ukrainian power systems is an important issue. 
Institute of renewable energy engineering was founded in the structure of the Ukraini-
an National Academy of Sciences in 2003. One of Institute scientific areas is 
development of wind energy systems. Modern wind energy system is a complex 
constructive building. One of the main peculiarity of wind generator operation is 
irregular load of it’s construction and rotating parts, particularly given the inability 
of wind to generate power consistently. Dynamic loads to different parts of wind 
generator and wind farm can be significant. Special monitoring systems and diagnostic 
systems should be implemented to modern wind energy system. 

A prototype of an expert system for wind energy systems vibration diagnostics 
was developed at the Institute of Electrodynamics of the Ukrainian National Academy 
of Sciences (Fig. 4.16).

A stochastic approach was used for the expert system software elaboration. Some 
of the methods were demonstrated in [75]. Vibration signals of wind energy system 
parts are considered as stochastic processes. Early warning of failures (defects) of the 
Wind Energy Conversion System (WECS) parts is based on the changes of statistical 
parameters and characters of vibration processes which accompanies wind energy 
system operation.

A prototype of the expert system provides vibration measurement of the following 
WECS elements:
§  wind turbine bearings;
§  generator bearings;
§  transmission;
§  wind farm.
The prototype of expert system also has possibilities:
§  to measure aerodynamic noise during wind generation operation;
§  to accumulate and record measured data;
§  to analyze the measured data.
The central module for measured data registration and transmission is construc-

ted for WECS on the base of PC. It is located directly in wind generator farm of 
WECS. Module for measured data input/output and storage is located on central 
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module. Measured data from every wind generator of WECS comes to central mo -
dule for further data registration and transmission. Radiochannels, cable commu-
nications, WEB modems can be used for information transmission to the central 
module. 

Special devices, on PC base, were constructed and manufactured for WECS 
information data measurement. It makes possible to provide a preliminary analysis 
of input signals, analog-to-digital (A-D) conversion of input signals, data registra-
tion and storage. ADC module converts amplified analog information signals to 
digital signals. Sampling frequencies are the following: 62,5 kHz, 125 kHz, 250 kHz, 
500 kHz, 1 mHz, 2 mHz. 12 bit ADC and buffer storage 128 kBit embedded to the 
prototype of the expert system.

Software description. Original software includes four modules:
1. Basic software module.
2. Module of input information signals storage and analysis.
3. Module of output information visualization.
4. Interface module for analog data input.
Basic software module connects and controls all others modules.
Fig. 4.17 shows software structure and Fig. 4.18 shows basic software windows 

(plug-ins). The software provides "fast search" by predetermined parameters that 
provides fast search of the necessary information. Special "map" is formed for every 
measurement (location of wind system, time of experiment, etc). Window "Visua-
lization and analysis" is used for data scan and for new data records (Fig. 4.19). 

The software interface is based on the "Dock Management" tech no  logy. It permits 
to develop a fle xible software interface. Data ana lysis modules are dynamic libraries 
that include analysis procedures and visual element for determina tion of parameters. 

Software includes the following signal processing methods: 
histogram analysis of signals and data with Pearson’s smoothing curves;

Fig. 4.16. Photo of the expert system prototype
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autocorrelation analysis of information signals;
statistical spectral analysis;
autoregressive analysis.

Fig. 4.17. Structure of the developed software

Fig. 4.18. Basic software program window: 1 — structure; 2 — test list; 3 — testing "map"; 4 — pre-
liminary data scan
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4.5. Application of developed methods to a renewable energy expert system

The software also has a decision-
making module. Some of the 
methods are represented in [76].

It is necessary to remark that 
input data is not changed during 
analysis and program recording of 
files, used in algorithms and their 
parameters. 

If it is necessary data may be converted to the format "XY" and others software 
packages may be applied for information signal processing and data analysis. 

Special "Mark" is realized in the developed software interface (Fig. 4.20).
It allows connecting others software packages without basic software program 

code changes. It is necessary to remark that that window "Mark" is reflected together 
with window "Visualization and analysis". "Mark" is a part of the window. 

Some expert system prototype specifications are the following:
Physical signals, measuring by the expert system prototype: 
§  Vibration signals (vibration displacement, vibration velocity, vibration accele-

ration).

Fig. 4.19. "Visualization and analysis" window: 1, 2 — rejection filters parameters; 3 — instru -
ments panel; 4 — signal processing; 5 — realizations list; 6 — process spectrum; 7 — visualization 
information parameters; 8 — band-pass filters parameters

Fig. 4.20. "Mark" dialog window
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Fig. 4.22. Estimation of autocorrelation function of vibration signal at the frame of transmission

Fig. 4.21. Places of transducers installation: 1 — frame of basic shift in radial direction near bear-
ing at the side of wind wheel hub; 2 — frame of basic shift in radial direction near bearing at the 
side of transmission; 3 — frame of transmission near bearing of low rotating speed shift in radial 
direction; 4 — frame of transmission near bearing of middle rotating speed shift in axis direction; 
5 — frame of transmission near bearing of high rotating speed shift in axis direction; 6 — frame of 
generator near working end of shift in radial direction
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4.5. Application of developed methods to a renewable energy expert system

Technical specification of the expert system prototype:
§  Frequency range of measured vibration signals: 20 Hz — 30 kHz.
§  Range of analog signals sampling frequencies: 16 kHz -1 mHz.
§  Maximal duration of vibration signals 1 sec.
§  Amplitude range of input vibration signals ±1.024 V.
§  Number of measurement channels: 4.
The prototype of expert system was used for studying the vibration parameters of 

USW 56-100 wind turbine at the Ukrainian corporation "PO Yuzhmash". Histogram 
analysis with Pearson smoothing curves application and statistical spectral analysis 
was performed during the experimental study. Different types of vibration transducers 
were used during the research. 

Experimental study was performed in so called "engine" regime of wind turbine. 
Generator’s shaft was rotating at the average speed of 1449 revolution per minute 
(rev./min). Wind wheel hub shift was rotating at the speed of 72 rev/min.

Fig. 4.24. Histogram and smoothing curve of Pearson type 7 of vibration signal at the frame of 
transmission

Fig. 4.23. Estimation of power spectral density function of vibration signal at the frame of trans-
mission
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The following transducers were installed at the wind turbine: Vp1 (accelerometr 
DN-4), VP2 (accelerometer D-14), VP3 (accelerometer ABC-017), VP4 (seismic 
transducer SV-10C). Different types of transducers were used because the most 
effective transducer type for WECS vibrodiagnostics should be selected. 

Transducers VP1-VP3 were installed at different parts of wind turbine. Transducers 
installation places are shown in Fig. 4.21.

Sampling frequency equals 15 625 Hz during test. Volume of studied vibration 
signals samples was N = 16 000. Estimations of spectral and correlation functions and 
distribution functions were calculated. 

Estimation of normalized autocorrelation function of vibration signals from 
transducer VP1 which was installed at the frame of transmission near bearing of low 
rotating speed shift in radial direction is shown in Fig. 4.22. Estimation of power 
spectral density of vibration signals from transducer VP1 which was installed at the 
frame of transmission near bearing of low rotating speed shift in radial direction is 
shown in Fig. 4.23.

Histogram with Smoothing curve of vibration signals from transducer VP1 which 
was installed at the frame of transmission near bearing of low rotating speed shift in 
radial direction is shown in Fig. 4.24.

Using the developed prototype of WECS expert system diagnostic parameters 
such as autoregression parameters were estimated. The estimations of diagnostic 
parameters were analyzed. Obtained results shows that diagnostic algorithms and 
software can be applied for the WECS parts vibration diagnostics. 
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